

ASX Release

15 June 2023

Significant Rare Earths system further confirmed at Neo prospect, Paddy's Well Project.

Highlights

- <u>Multiple holes</u> with significant mineralised REE intercepts (~80m) from surface; potentially some of widest reported in Australia¹, alluding to large scale & "open pit" potential.
- Mineralisation remains open at depth and along strike.
- Encouraging high ratio of in-demand 'magnet'² REEs to TREO ('Magnet REO') (peak: 30%)
- Metallurgical testing underway to characterise the REE species present positive 'size by assay' results have been received and are under review.

Voltaic Strategic Resources Limited (ASX:VSR) has confirmed the scale potential of the Neo Prospect at its Paddy Well Project in Western Australia's Gascoyne region after encountering several further extremely wide REE mineralised intercepts from surface. Assays from another 12 RB drillholes from the Phase-1B campaign show intercepts of almost 80m <u>from surface</u> across multiple holes, with mineralisation remaining open at depth and along strike.

Neo forms part of an expanding regional 6 x 2km anomalous area with multiple >1,000 ppm TREO zones identified at surface and only a fraction of the area tested to date (Fig. 3). Encouragingly, drilling returned individual metre values up to 1% TREO, and high tenor 'magnet REE' percentages up to 30%.

Work commenced earlier this year to test the upper clay zone and determine basement depth within an area where historical uranium-focused drilling identified REEs in both the upper oxide (clay) horizon, and primary REE mineralisation in deeper basement³.

Voltaic Chief Executive Officer Michael Walshe commented:

"We now have unequivocal evidence for the presence of a large <u>alumina-rich, kaolinitic REE clay</u> <u>system at Neo</u>, which has the potential for hosting a near-surface "open-pittable" REE clay deposit of substantial scale¹."

"Metallurgical testing on the clays is now underway to determine their preliminary economic viability and ion-absorption (IAD) potential. The 'size by assay' analysis work has been completed and the preliminary results are encouraging for a significant upgrade in REE grades and the removal of waste, by undertaking simple upstream mineral processing techniques⁴.

¹ Based on stated TREO cutoff and a preliminary review of several peer company announcements. Please see Forward Looking cautionary statement on page 5 & JORC tables.

² TREO: Total Rare Earth Element Oxide including yttrium oxide (Y₂O₃); MREO:TREO: the ratio of "Magnet" REEs to Total REEs in oxide form. "Magnet" REEs = Nd, Pr, Tb, Dy

³ Refer ASX:VSR release dated 13 October 2022 'Rare Earths Confirmed at Gascoyne Project'

⁴ An ASX announcement is currently being prepared to provide an update on these results.

"The leach testwork is due to commence next week once this data has been reviewed and a decision made on the optimal size fraction for leaching. Encouragingly, halloysite has already been identified⁵ from scanning electron microscope (SEM) analysis (*Fig. 10*), which is a kaolinitic clay mineral commonly found in true IAD clays."

"Simultaneously, in the field our focus is now on primary carbonatite targets. We will soon undertake several field surveys including: airborne magnetics / radiometrics, photogrammetry, and soil sampling. These programs will increase our pool of priority targets and ensure several months of highly active and material news flow over the remainder of 2023."

Figure 1. Location of the Neo prospect area, Paddys Well project.

⁵ Refer ASX:VSR release dated 17 April 2023 'Met test work on REE-enriched clays at Paddys Well' & ASX:VSR release dated 17 May 2023 'Drilling confirms significant Rare Earths system at Neo'

Significant assay results from 14-hole Phase 1B campaign⁶:

DRILL HOLE		INTERSECTION
NEORB002		78m @ 1,001ppm TREO (from surface NEORB002)
	incl:	52m @ 1,270ppm TREO (from 21m)
	and:	12m @ 3,402ppm TREO (from 50m)
with	peak of:	1m @ 10,072ppm TREO (1.01% TREO) (from 56m)
NEORB003		78m @ 661ppm TREO (from surface NEORB003)
	incl:	3m @ 1,187ppm TREO (from 53m)
	incl:	1m @ 1,410ppm TREO (from 77m EOH)
with	peak of:	1m @ 2,046ppm TREO (from 54m)
NEORB008		75m @ 521ppm TREO (from surface NEORB008)
	incl:	3m @ 1,009ppm TREO (from 42m)
with	peak of:	1m @ 1,263ppm TREO (from 13m)
NEORB006		65m @ 546ppm TREO (from surface NEORB006)
	incl:	18m @ 1,018ppm TREO (from 34m)
with	peak of:	1m @ 1,899ppm TREO (from 46m)
NEORB013		63m @ 582ppm TREO (from surface NEORB013)
	incl:	4m @ 1,143ppm TREO (from 49m)
NEORB004		60m @ 491ppm TREO (from surface NEORB004)
	incl:	12m @ 636 ppm TREO (from 67m)
with	peak of:	1m @ 2,045ppm TREO (from 68m)
NEORB014		59m @ 878ppm TREO (from surface NEORB014)
	incl:	5m @ 1,758ppm TREO (from 18m)
with		1m @ 2,827ppm TREO (from 22m)
	peak of:	
NEORB005		33m @ 756ppm TREO (from surface NEORB005)
NEORB005	incl:	

⁶ This program comprised 14 RB holes for 710m at Neo, and 8 holes for 405m at Link, with assays for Link holes pending

No further clay-focused drilling is planned until the leaching results are known, which the Company believes is the most prudent use of capital going forward, and concurrently, exploration continues focusing on the Company's several primary carbonatite REE & niobium targets within Paddys Well (see *Fig. 2*).

Figure 2. The strategy ahead at Paddy's Well

Figure 3. TREO contours at the Neo prospect within regional 6 x 2km anomalous area with multiple >1,000ppm TREO zones identified at surface and only a fraction of the area tested to date.

Release authorised by the Board of Voltaic Strategic Resources Ltd.

For more information, please contact:

MICHAEL WALSHE

Chief Executive Officer Phone: +61 8 6245 9821 michael.walshe@voltaicresources.com

GARETH QUINN

Media and Investor Relations Phone +61 417 711 108 gareth@republicpr.com.au

UPCOMING NEWS FLOW

June/July 2023:	Paddys Well geophysical data (radiometric / magnetic / photogrammetry) acquisition update
June/July 2023:	Further drill sample assays from Link prospects
June/July 2023:	Update on Metallurgical testing of REE-enriched clays from Neo

PLANNED AND COMPLETED ACTIVITIES AT PADDYS WELL: Q2-Q3 2023

	April	Мау	June	July	August	September
Field reconnaissance		-			•	
Auger vacuum & aircore/RC drilling	•		•		•	•
Scanning electron microscope (SEM) / mineralogical characterisation			•			•
Project data review and targeting		-				
UAV drone survey			••			
Sighter metallurgical testwork		•				
Aeromag, radiometric survey						
Phase 1B Drill Results				 •		
Follow-up drill campaign			•			
Ranking of targets	•		•			

COMPETENT PERSON STATEMENT

The information in this announcement related to Exploration Results is based on and fairly represents information compiled by Mr Claudio Sheriff-Zegers. Mr Sheriff-Zegers is employed as an Exploration Manager for Voltaic Strategic Resources Ltd and is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

The information in this document that relates to metallurgical test work and flowsheet development is based on, and fairly represents, information and supporting documentation reviewed by Mr Michael Walshe. Mr Walshe is engaged as Chief Executive Officer for Voltaic Strategic Resources Ltd. He holds a Bachelor of Chemical and Process Engineering (Hons.) and a Master of Business Administration (Finance). He is a chartered engineer with both Engineers Australia & the Institution of Chemical Engineers (IChemE), and is a member of the Australasian Institute of Mining & Metallurgy (AusIMM). He has over 15 years of experience in process engineering and metallurgy across a wide range of commodities including rare earths, and has approved and consented to the inclusion in this document of the matters based on his information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This announcement may contain forward-looking statements involving several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update statements if these beliefs, opinions, and estimates should change or to reflect other future development. Furthermore, this announcement contains forward-looking statements which may be identified by words such as "potential", "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company cannot and does not give assurances that the results, performance, or achievement expenses or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

ABOUT VOLTAIC STRATEGIC RESOURCES

Voltaic Strategic Resources Limited explore for the next generation of mines that will produce the metals required for a cleaner, more sustainable future where transport is fully electrified, and renewable energy represents a greater share of the global energy mix.

The company has a strategically located critical metals portfolio led by lithium, rare earths, base metals, and gold across two of the world's most established mining jurisdictions: Western Australia & Nevada, USA.

Voltaic is led by an accomplished corporate and technical team with extensive experience in REEs, lithium and other critical minerals, and a strong skillset in both geology and processing / metallurgy.

Gascoyne Region Western Australia	Meekatharra Region Western Australia	Stillwater Range Nevada, USA
 Emerging critical minerals province (REE, Li, Ni-Cu-Co-PGE). Active neighbours in the region. MEASTINGS OF COMPACT OF COMPACT	 Established gold district with two vanadium development projects. Active neighbours in the region. Active neighbours in the region. Active neighbours in the region. 	 Ni-Cu-Co project containing formerly producing Co mine. Global Energy Metals adjacent. GLOBAL SCORP

Appendix 1 Drill data

Table 1. Neo blade/reverse circulation (RB) drilling – lab assay results, significant intersections

Hole	From (m)	To (m)	Interval (m)	TREO* (ppm)	TREO intercept (ppm)
NEORC001	0	40	40	583	40m @ 583ppm TREO (from surface NEORC001)
NEORB002	0	78	78	1,001	78m @ 1,001ppm TREO (from surface NEORB002)
	0	14	14	629	14m @ 629ppm TREO (from surface)
	21	72	52	1,270	52m @ 1,270ppm TREO (from 21m)
	50	61	12	3,402	12m @ 3,402ppm TREO (from 50m)
	55	56	1	10,072	1m @ 10,072ppm TREO (1.01% TREO) (from 55m)
NEORB003	0	78	78	661	78m @ 661ppm TREO (from surface NEORB003)
	4	13	9	985	9m @ 985ppm TREO (from 4m)
	17	21	4	760	4m @ 760ppm TREO (from 17m)
	28	33	5	1,151	5m @ 1,151ppm TREO (from 28m)
	31	32	1	1,977	1m @ 1,977ppm TREO (from 31m)
	36	49	13	601	13m @ 601ppm TREO (from 36m)
	53	56	3	1,187	3m @ 1,187ppm TREO (from 53m)
	54	55	1	2,046	1m @ 2,046ppm TREO (from 54m)
	58	79	21	679	21m @ 679ppm TREO (from 58m)
	64	67	3	851	3m @ 851ppm TREO (from 64m)
	64	65	1	1,037	1m @ 1,037ppm TREO (from 64m)
	74	79	5	816	5m @ 816ppm TREO (from 74m)
	77	78	1	1,410	1m @ 1,410ppm TREO (from 77m EOH)
NEORB004	0	60	60	491	60m @ 491ppm TREO (from surface NEORB004)
	28	34	6	800	6m @ 800ppm TREO (from 28m)
	47	55	8	664	8m @ 664ppm TREO (from 47m)
	67	79	12	636	12m @ 636ppm TREO (from 67m)
	68	69	1	2,045	1m @ 2,045ppm TREO (from 68m)
	74	78	4	753	4m @ 753ppm TREO (from 74m)
	77	78	1	1,133	1m @ 1,133ppm TREO (from 77m)
NEORB005	0	33	33	756	33m @ 756ppm TREO (from surface NEORB005)
	5	15	10	861	10m @ 861ppm TREO (from 5m)
	13	14	1	1,063	1m @ 1,063ppm TREO (from 13m)
	21	33	12	1,004	12m @ 1,004ppm TREO (from 21m)
	31	33	2	2,994	2m @ 2,994ppm TREO (from 31m)
	32	33	1	3,766	1m @ 3,766ppm TREO (from 32m)
NEORB006	0	65	65	546	65m @ 546ppm TREO (from surface NEORB006)
	34	57	23	914	23m @ 914ppm TREO (from 34m)
	34	52	18	1,018	18m @ 1,018ppm TREO (from 34m)
	43	51	8	1,216	8m @ 1,216ppm TREO (from 43m)
	46	47	1	1,899	1m @ 1,899ppm TREO (from 46m)
NEORB007	0	12	12	493	12m @ 493ppm TREO (from surface NEORB007)
	5	8	3	844	3m @ 844ppm TREO (from 5m)
	5	6	1	1,413	1m @ 1,413ppm TREO (from 5m)
	17	64	47	431	47m @ 431ppm TREO (from 17m)
	41	42	1	1,049	1m @ 1,049ppm TREO (from 41m)
	49	63	14	639	14m @ 639ppm TREO (from 49m)
	57	58	1	1,002	1m @ 1,002ppm TREO (from 57m)

Hole	From (m)	To (m)	Interval (m)	TREO* (ppm)	TREO intercept (ppm)
NEORB008	0	75	75	521	75m @ 521ppm TREO (from surface NEORB008)
	13	29	16	747	16m @ 747ppm TREO (from 13m)
	13	21	8	948	8m @ 948ppm TREO (from 13m)
	13	14	1	1,263	1m @ 1,263ppm TREO (from 13m)
	16	17	1	1,104	1m @ 1,104ppm TREO (from 16m)
	38	54	16	697	16m @ 697ppm TREO (from 38m)
	42	45	3	1,009	3m @ 1,009ppm TREO (from 42m)
	43	44	1	1,157	1m @ 1,157ppm TREO (from 43m)
NEORB009	0	4	4	358	4m @ 358ppm TREO (from surface NEORB009)
	9	11	2	322	2m @ 322ppm TREO (from 9m)
NEORB010	0	10	10	356	10m @ 356ppm TREO (from surface NEORB010)
	6	7	1	1,240	1m @ 1,240ppm TREO (from 6m)
NEORB011	0	7	7	574	7m @ 574ppm TREO (from surface NEORB011)
	7	8	1	791	1m @ 791ppm TREO (from 7m)
NEORB012	0	28	28	447	28m @ 447ppm TREO (from surface NEORB012)
	5	8	3	703	3m @ 703ppm TREO (from 5m)
	25	28	3	708	3m @ 708ppm TREO (from 25m)
NEORB013	0	63	63	582	63m @ 582ppm TREO (from surface NEORB013)
	41	63	22	741	22m @ 741ppm TREO (from 41m)
	49	53	4	1,143	4m @ 1,143ppm TREO (from 49m)
NEORB014	0	59	59	878	59m @ 878ppm TREO (from surface NEORB014)
	11	13	2	1,285	2m @ 1,285ppm TREO (from 11m)
	12	13	1	1,502	1m @ 1,502ppm TREO (from 12m)
	18	23	5	1,758	5m @ 1,758ppm TREO (from 18m)
	22	23	1	2,827	1m @ 2,827ppm TREO (from 22m)
	24	32	8	1,195	8m @ 1,195ppm TREO (from 24m)
	31	32	1	1,944	1m @ 1,944ppm TREO (from 31m)
	53	58	5	1,137	5m @ 1,137ppm TREO (from 53m)
	56	57	1	2,122	1m @ 2,122ppm TREO (from 56m)

* NOTE: cutoff of 250ppm TREO used

Figure 4. Neo section 374500E - cross section significant intercepts

Figure 5. Neo 374460E cross section significant intercepts

Figure 6. Neo 374590E cross section significant intercepts

Figure 7. Neo 374415E cross section significant intercepts

Figure 8. Map plan showing drill collars at the Neo prospect.

Figure 9. Aerial photo of the Neo prospect area, Paddys Well project.

Figure 10. Halloysite nanotubes & associated kaolin⁷ identified from SEM analysis of REE-enriched clay samples from historical drillhole GAD0004⁸. Halloysite is a common kaolinitic clay mineral (Al₂O₃•2SiO₂•2H₂O) found in true REE ionic adsorption deposits (IADs)⁹

⁷ Both halloysite (needles) and kaolinite (plates) are seen here intergrown with a REE-phosphate grain (bright phase on the right). The association between the minerals suggests that the REE phosphate formed contemporaneously with the clay minerals or after clay formation indicating that the REE phosphate is a secondary REE mineral and not a detrital REE phase.

⁸ Refer ASX release date 13 October 2022 'REEs confirmed at Paddys Well'

⁹ Qiu S, Yan H, Hong B, Long Q, Xiao J, Li F, Tong L, Zhou X, Qiu T 2022, 'Desorption of REEs from Halloysite and Illite: A Link to the Exploitation of Ion-Adsorption RE Ore Based on Clay Species', *Minerals*, vol. 12, no. 8, <u>https://doi.org/10.3390/min12081003</u>.

Appendix 2 Supplementary Data

Table 2. Neo phase 1B drilling summary

Hole ID	Easting GDA_94	Northing GDA_94	RL	Mag Azimuth	Dip	Depth (m)	Prospect	Drill Type
NEORC001	374497	7257528	341	010	-60	40	Neo	RC
NEORB002	374497	7257528	341	0	-90	78	Neo	RB
NEORB003	374496	7257494	341	0	-90	78	Neo	RB
NEORB004	374505	7257572	341	0	-90	78	Neo	RB
NEORB005	374412	7257538	341	0	-90	35	Neo	RB
NEORB006	374420	7257578	341	0	-90	65	Neo	RB
NEORB007	374580	7257507	341	0	-90	63	Neo	RB
NEORB008	374589	7257547	341	0	-90	75	Neo	RB
NEORB009	374591	7257594	341	0	-90	15	Neo	RB
NEORB010	374682	7257537	341	0	-90	11	Neo	RB
NEORB011	374681	7257566	341	0	-90	17	Neo	RB
NEORB012	374489	7257442	341	0	-90	32	Neo	RB
NEORB013	374457	7257508	341	0	-90	63	Neo	RB
NEORB014	374458	7257551	341	0	-90	60	Neo	RB

Table 3. Rare Earth Element Assay Results (as Oxides) from Phase 1B Campaign

Hole ID	From	То	TREO	MREO:	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy₂O₃	La ₂ O ₃	CeO ₂	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃
	(m)	(m)	(ppm)	TREO	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
				(%)															
NEORB002	0	1	422	21.6%	67.3	21.0	0.6	2.3	94.6	196.8	11.1	1.3	5.5	0.4	0.9	0.1	0.6	0.1	10.2
	1	2	633	21.6%	102.3	30.7	0.8	3.2	147.8	291.7	16.2	1.6	7.8	0.5	1.1	0.1	0.8	0.1	14.3
	2	3	733	21.5%	116.6	36.6	1.0	3.8	167.7	343.2	18.4	1.7	9.6	0.5	1.2	0.1	0.7	0.1	15.4
	3 4	4 5	871 644	22.0% 22.2%	142.3 105.7	43.5 32.7	1.2 1.0	4.4 3.9	207.6 147.8	395.9 292.8	23.0 17.6	2.0 1.4	11.8 8.9	0.6 0.5	1.3 1.2	0.1 0.1	0.8 0.8	0.1 0.1	17.4 15.0
	4 5	6	655	22.2%	105.7	32.7	0.9	3.9	147.8	303.4	16.7	1.4	8.3	0.5	0.9	0.1	0.8	0.1	13.0
	6	7	597	22.7%	101.7	30.7	0.7	2.2	137.2	278.8	14.6	1.2	6.9	0.3	0.6	0.1	0.4	0.1	8.0
	7	8	417	22.8%	71.4	21.3	0.5	1.8	92.2	194.4	10.8	1.0	5.5	0.2	0.6	0.1	0.4	0.0	7.0
	8	9	279	21.7%	45.0	13.7	0.4	1.3	61.0	132.4	7.6	0.7	3.8	0.2	0.4	0.0	0.3	0.1	5.2
	9	10	834	22.7%	142.3	41.7	1.0	4.3	190.0	381.8	21.2	1.6	10.5	0.6	1.4	0.2	1.1	0.2	17.4
	10	11	1,169	23.0%	200.6	61.4	1.4	5.0	261.5	542.3	29.2	2.0	13.6	0.7	1.6	0.2	1.2	0.2	21.7
	11	12	702	22.7%	119.0	37.0	0.8	2.9	157.2	329.1	17.4	1.4	8.4	0.4	0.8	0.1	0.6	0.1	11.2
	12	13	339	22.2%	56.6	16.7	0.4	1.5	73.9	161.6	8.4	1.0	4.1	0.2	0.5	0.1	0.4	0.1	6.0
	13	14	509	22.6%	85.7	26.2	0.6	2.4	115.9	234.3	13.2	1.4	6.5	0.4	0.8	0.1	0.6	0.1	9.3
	14	15	227	22.2%	37.7	11.2	0.3	1.2	53.9	101.7	6.1	1.0	3.0	0.2	0.4	0.1	0.4	0.1	5.1
	15	16	255	21.8%	41.4	12.7	0.4	1.3	57.5	119.5	6.4	1.1	3.3	0.2	0.5	0.1	0.4	0.0	4.9
	16 20	20 21	283 740	22.2% 22.7%	47.1 126.0	13.8 38.1	0.4 0.8	1.5 3.0	61.0 164.2	133.5 347.9	7.1 18.6	1.2 1.6	3.5 8.5	0.2 0.4	0.5 0.9	0.1 0.1	0.4 0.8	0.1 0.1	5.7 12.0
	20	21	316	23.2%	54.8	16.7	0.8	1.4	73.2	142.9	8.2	1.3	3.8	0.4	0.9	0.1	0.8	0.1	5.5
	22	22	303	23.2%	52.4	16.1	0.4	1.4	67.1	139.4	7.8	1.3	3.6	0.2	0.4	0.1	0.4	0.0	5.5
	23	24	201	23.2%	34.8	10.1	0.3	1.0	44.8	91.6	5.1	1.2	2.5	0.1	0.3	0.0	0.3	0.0	3.5
	24	25	438	23.2%	75.5	23.0	0.6	2.4	92.4	202.6	12.1	1.7	5.9	0.4	1.0	0.1	0.8	0.1	9.1
	25	26	692	23.2%	120.1	36.0	0.9	3.6	150.1	320.9	17.9	1.8	8.9	0.5	1.3	0.2	1.3	0.2	13.0
	26	27	973	22.7%	166.8	49.5	1.0	3.6	226.4	449.8	23.9	2.1	11.5	0.5	1.1	0.1	0.9	0.1	14.1
	27	28	441	22.7%	75.6	22.6	0.5	1.6	101.8	205.0	11.1	1.4	5.0	0.2	0.4	0.1	0.4	0.1	5.7
	28	29	1,042	22.6%	177.3	53.9	1.0	3.7	241.6	483.7	25.5	2.2	11.4	0.5	1.3	0.2	1.2	0.2	14.2
	29	30	566	23.4%	99.1	30.2	0.6	2.4	124.3	261.2	14.6	2.0	6.3	0.4	1.1	0.1	1.2	0.2	9.7
	30	31	544	23.0%	93.7	28.0	0.6	2.7	120.8	249.5	13.8	1.9	6.8	0.4	1.0	0.1	1.0	0.2	11.3
	31	32	396	23.1%	68.7	20.3	0.5	1.9	87.8	181.6	10.3	1.9	4.9	0.3	0.6	0.1	0.5	0.1	8.1
	32	33	260	23.4%	45.5	13.8	0.3	1.3	56.3	118.3	7.3	1.7	3.3	0.2	0.5	0.0	0.4	0.1	5.0
	33 34	34 35	526 139	22.7% 22.7%	88.8 23.2	27.1 6.7	0.7 0.5	2.7 1.2	114.1 26.3	244.8 64.7	13.9 4.3	2.0 0.6	6.8 2.7	0.4 0.2	0.9 0.6	0.1 0.1	0.8 0.5	0.1 0.1	10.6 4.8
	34 35	35 36	895	22.7%	23.2	47.6	0.5	3.4	26.3	420.5	4.3 23.7	2.8	2.7	0.2	1.1	0.1	0.5	0.1	4.0 11.9
	36	37	588	22.9%	101.0	30.2	0.9	2.6	126.7	277.6	15.8	1.8	7.6	0.3	0.7	0.1	0.6	0.1	9.1
	37	38	490	22.6%	82.7	25.4	0.6	2.3	108.7	228.4	12.6	1.9	6.1	0.4	0.7	0.1	0.6	0.1	8.4
	38	39	364	23.2%	63.5	19.3	0.4	1.4	79.6	171.0	9.2	1.9	3.9	0.2	0.4	0.0	0.3	0.0	4.8
	39	40	291	22.8%	49.7	15.2	0.3	1.1	64.7	135.9	7.8	1.7	3.3	0.1	0.3	0.0	0.2	0.0	3.6
	40	44	319	23.4%	56.3	16.4	0.4	1.4	69.3	147.6	8.6	1.8	3.7	0.2	0.4	0.0	0.3	0.1	4.9
	44	45	505	23.2%	87.8	26.5	0.6	2.4	110.1	233.1	13.1	1.8	5.8	0.4	0.9	0.1	0.8	0.1	9.9
	45	46	707	22.7%	119.0	37.6	0.8	3.5	152.5	332.6	16.9	2.5	7.7	0.5	1.3	0.2	1.3	0.2	14.6
	46	47	848	22.4%	140.0	44.0	1.2	5.0	183.0	394.7	20.1	3.2	10.0	0.8	2.0	0.3	1.9	0.3	22.5
	47	48	721	22.1%	116.6	38.4	0.9	3.7	156.0	342.0	16.8	2.7	7.8	0.6	1.4	0.2	1.3	0.2	15.9
	48	49	916	22.9%	154.0	49.1	1.3	5.5	194.7	422.8	23.0	3.6	11.2	0.9	2.2	0.3	2.2	0.3	24.9
	49	50	1,128	23.1%	192.5	59.6	1.5	6.6	236.9	523.6	28.4	4.7	13.8	0.9	2.4	0.3	2.1	0.3	29.3
	50 51	51 52	1,630 2,186	23.9% 22.8%	285.8 367.4	90.9 116.3	2.4	10.1 12.3	344.8 424.6	730.9	43.4 56.4	7.3 9.5	21.8 27.0	1.6 1.9	4.2	0.5 0.6	3.8 3.9	0.5 0.6	46.5 55.7
	51 52	52 53	2,186	22.8%	367.4 496.9	116.3	2.9 4.5	12.3 19.4	424.6 585.2	1,050.7 886.7	56.4 78.7	9.5 15.5	37.7	1.9	4.6 6.9	0.6	3.9 5.4	0.6	55.7 70.4
	52	53 54	1,775	20.0%	286.9	90.7	2.1	8.9	337.8	885.5	43.9	7.6	20.1	1.4	3.3	0.9	2.7	0.7	40.5
	54	55	9,625	25.9%	1,854.6	584.8	11.2	39.0	2,545.0	3,865.3	238.9	55.1	114.3	4.8	9.0	0.8	3.9	0.4	109.1
	55	56	10,072	29.9%	2,204.5	685.0	23.5	97.0	1,630.2	4,205.0	365.3	92.1	199.4	14.0	31.6	3.9	23.1	2.9	289.5
	56	57	4,662	30.1%	1,027.6	317.8	11.4	48.0	716.6	1,920.9	175.1	41.7	98.9	7.0	16.7	2.1	12.6	1.6	170.2
	57	58	2,715	24.5%	487.6	151.0	4.9	21.0	322.5	1,417.3	80.9	17.8	42.4	3.2	7.3	1.0	6.5	0.9	81.4
	58	59	1,885	23.1%	318.4	98.8	3.3	14.9	381.2	856.2	52.8	10.0	28.9	2.3	5.6	0.8	5.0	0.7	64.3
	59	60	1,276	23.6%	221.6	67.4	2.3	10.5	265.1	566.9	35.7	6.1	19.6	1.7	4.4	0.6	3.9	0.6	42.4
	60	61	1,459	22.8%	243.8	75.4	2.4	10.6	303.8	671.2	37.9	7.6	21.3	1.6	4.2	0.5	3.3	0.5	41.9
	61	62	861	21.9%	140.0	43.0	1.0	4.5	194.7	401.8	19.9	3.2	9.7	0.7	1.7	0.2	1.4	0.3	18.8

Hole ID	From	То	TREO	MREO:	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy ₂ O ₃	La ₂ O ₃	CeO ₂	Sm ₂ O ₃	Eu ₂ O ₃	Gd₂O₃	Ho₂O₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃
	(m)	(m)	(ppm)	TREO (%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
NEORB002	62	63 64	855 3,137	22.9%	143.5 562.2	44.7 174.0	1.5	6.2 24.0	181.8 382.3	380.7 1,639.8	24.0	4.1 19.5	12.7 48.5	1.0 3.5	2.6 8.6	0.4	2.3 6.6	0.3 0.9	30.6 88.1
	63 64	68	659	24.4% 22.0%	106.3	34.0	5.6 0.9	4.0	146.6	303.4	92.7 16.0	2.8	8.4	0.6	1.6	1.1 0.2	1.4	0.9	17.9
	68	69	442	22.1%	72.4	22.7	0.5	2.0	102.6	205.0	10.0	2.0	4.9	0.3	0.7	0.1	0.6	0.1	7.9
	69	70	760	22.0%	123.6	39.9	0.8	3.0	179.4	352.6	17.4	2.3	8.4	0.4	1.0	0.1	0.8	0.1	13.1
	70 71	71 72	832 506	24.4% 21.6%	149.3 80.4	46.9 23.4	1.3 1.0	5.2 4.4	115.4 109.0	428.7 227.2	20.6	3.7 3.7	11.5 9.3	0.8 0.7	1.9 1.5	0.3 0.2	1.5 1.1	0.2 0.1	23.9 19.2
	72	76	261	21.0%	41.5	23.4 12.1	0.8	3.2	55.6	104.5	14.1 8.9	1.5	9.3 6.6	0.7	1.3	0.2	1.1	0.1	19.2
	76	77	151	21.0%	21.2	6.5	0.6	3.3	26.7	52.9	5.3	0.7	4.6	0.6	1.7	0.3	1.5	0.2	21.7
	77	78	477	20.0%	66.7	21.3	1.2	6.3	104.4	188.6	12.2	2.2	10.4	1.2	3.2	0.4	2.6	0.4	46.6
NEORC001	0 4	4 5	340 318	22.2% 20.0%	56.0 46.4	16.6 15.0	0.6 0.4	2.3 1.8	76.5 69.0	153.4 157.0	9.1 7.8	0.9 0.9	5.1 4.2	0.4 0.3	0.8 0.5	0.1 0.1	0.6 0.3	0.1 0.1	9.7 6.7
	5	6	560	21.7%	89.3	27.7	0.9	3.8	126.7	256.5	15.1	1.2	8.3	0.6	1.3	0.1	0.8	0.1	15.4
	6	7	540	21.3%	85.1	25.6	0.9	3.4	123.1	249.5	14.0	1.1	7.8	0.5	1.3	0.1	0.9	0.1	14.5
	7	8	755	21.9%	122.5	37.5	1.1	4.0	168.9	353.7	19.8	1.4	10.2	0.6	1.4	0.2	1.0	0.2	15.4
	8 9	9 10	945 649	21.3% 22.0%	149.3 106.4	46.5 32.6	1.2 0.8	4.7 2.9	218.1 151.3	445.1 301.0	24.2 17.2	1.7 1.2	12.2 8.4	0.6 0.4	1.4 0.9	0.2 0.1	1.1 0.6	0.2 0.1	16.8 10.6
	9 10	11	409	22.0%	67.3	21.0	0.6	2.9	91.9	188.6	11.7	1.2	6.0	0.4	0.9	0.1	0.0	0.1	8.1
	11	12	523	21.2%	82.2	26.2	0.6	2.0	123.1	247.1	12.8	1.3	6.0	0.3	0.6	0.1	0.5	0.1	7.8
	12	13	426	21.1%	67.1	20.5	0.5	1.7	102.6	197.9	10.4	1.2	5.0	0.3	0.7	0.1	0.5	0.1	7.8
	13	14	444 460	21.5%	71.4	22.5	0.4	1.5	106.0	209.7	10.4	1.1	4.7	0.2	0.4	0.1	0.3	0.0	5.5
	14 15	15 16	282	20.8% 21.6%	70.7 45.1	22.8 14.1	0.5 0.4	1.6 1.3	111.3 65.1	217.9 131.2	10.5 7.8	1.1 0.6	4.7 3.9	0.2 0.2	0.5 0.4	0.1 0.0	0.4 0.2	0.1 0.0	6.9 5.3
	16	17	418	20.2%	62.2	20.5	0.4	1.5	103.6	197.9	9.4	1.0	4.3	0.2	0.5	0.1	0.4	0.1	6.4
	17	18	492	19.9%	71.9	23.9	0.5	1.7	123.1	233.1	11.2	1.1	5.0	0.3	0.6	0.1	0.5	0.1	7.4
	18	19	831	21.1%	130.6	42.3	0.7	1.9	199.4	400.6	18.7	1.5	7.7	0.3	0.5	0.1	0.3	0.0	6.5
	19 20	20 21	421 955	20.6% 21.6%	64.0 154.0	21.3 48.3	0.3 0.8	1.1 2.8	104.4 225.2	201.5 455.6	9.1 22.5	1.1 2.0	3.8 9.2	0.1 0.4	0.3 0.9	0.0 0.1	0.1 0.5	0.0 0.1	3.7 10.5
	20	22	680	21.6%	110.3	33.7	0.6	1.9	160.7	324.5	16.2	1.3	7.1	0.4	0.9	0.1	0.3	0.1	6.7
	22	23	945	21.4%	150.5	48.3	0.8	2.4	221.7	453.3	22.0	2.2	9.5	0.3	0.8	0.1	0.6	0.1	10.3
	23	24	845	21.7%	137.6	43.1	0.7	2.1	198.2	404.1	20.2	1.7	8.0	0.3	0.5	0.1	0.5	0.1	7.9
	24	28	691 662	21.7%	112.0 104.3	35.2	0.6	2.1 2.2	163.0 159.5	328.0 313.9	16.8	1.8	7.2	0.2	0.6	0.1	0.4	0.1	7.0
	28 32	32 36	488	21.1% 21.3%	77.2	32.9 24.3	0.7 0.5	1.7	159.5	229.6	15.4 11.3	2.0 1.6	6.9 5.5	0.3 0.3	0.7 0.5	0.1 0.1	0.4 0.4	0.1 0.1	7.6 7.0
	36	37	689	22.0%	112.7	35.0	0.9	3.1	152.5	322.1	18.2	4.0	8.7	0.5	1.1	0.1	0.8	0.1	13.7
	37	38	538	22.0%	88.2	27.3	0.6	2.1	120.8	255.3	13.7	2.9	6.0	0.3	0.7	0.1	0.5	0.1	7.3
	38	39	940	21.9%	155.1	47.4	0.8	2.7	218.1	445.1	23.2	3.5	9.9	0.4	0.9	0.1	0.6	0.1	10.3
	39	40	532	21.9%	87.2	26.7	0.6	2.1	119.6	250.7	13.5	2.9	6.0	0.3	0.7	0.1	0.6	0.1	8.6
NEORB003	0	4	313	21.2%	48.1	14.1	0.7	3.4	63.8	146.2	8.0	1.8	5.5	0.6	1.5	0.2	1.5	0.2	17.1
	4	5	1,245	21.4%	194.8	58.8	2.2	10.7	286.2	573.7	29.2	6.6	17.4	1.8	4.4	0.6	3.4	0.5	55.2
	5	6	1,445	22.0%	232.1	69.0	3.0	14.0	319.0	651.1	36.4	8.9	23.2	2.3	5.9	0.7	4.4	0.6	74.7
	6 7	7 8	704 351	20.2% 20.3%	102.8 51.6	31.2 15.2	1.5 0.8	7.1 3.7	156.0 67.9	330.4 172.0	16.1 9.0	3.6 2.2	11.0 6.0	1.2 0.6	3.1 1.6	0.4 0.2	2.6 1.5	0.4 0.2	36.4 18.8
	8	9	653	20.3%	100.9	28.9	1.8	3.7 8.6	139.6	287.4	9.0 17.6	2.2 4.1	12.7	1.4	3.6	0.2	2.9	0.2	42.8
	9	10	729	20.8%	109.9	33.2	1.5	6.8	153.6	353.8	19.2	3.9	11.1	1.1	2.8	0.4	2.3	0.3	29.5
	10	11	541	20.2%	78.1	23.3	1.3	6.6	112.6	254.3	13.3	2.8	9.3	1.1	2.7	0.4	2.2	0.3	33.0
	11	12	1,493	20.2%	215.8	69.6	2.8	13.2	336.6	713.7	34.8	6.5	20.6	2.1	5.4	0.7	4.3	0.6	66.4
	12 13	13 14	1,705 489	19.8% 20.2%	243.8 72.3	77.2 22.2	2.9 0.7	13.3 3.6	412.8 112.0	805.8 238.3	36.2	5.7	21.2 6.1	2.3 0.6	5.9 1.5	0.8 0.2	5.2 1.5	0.7 0.2	71.2 17.3
	13	14	469 381	20.2%	72.3 54.8	17.0	0.7	2.2	87.4	230.3 191.6	11.2 8.5	1.5 1.3	4.3	0.6	1.5	0.2	1.5	0.2	17.3
	15	16	193	20.4%	28.7	8.8	0.3	1.5	42.3	92.6	4.5	0.8	2.5	0.3	0.8	0.1	0.8	0.1	8.7
	16	20	760	19.7%	110.8	34.2	0.9	4.1	178.3	379.6	16.8	2.1	8.2	0.6	1.6	0.2	1.4	0.2	20.8
	20	24	416	20.2%	61.8	19.1	0.6	2.7	96.2	203.9	9.7	1.7	5.1	0.4	1.0	0.1	0.8	0.1	12.5
	24 25	25 26	282 205	19.5% 20.2%	40.2 29.9	12.7 9.3	0.4 0.4	1.8 1.9	66.4 45.7	138.8 97.0	6.2 5.4	1.5 1.0	3.3 3.0	0.3 0.3	0.7 0.8	0.1 0.1	0.7 0.8	0.1 0.1	9.3 9.1
	25 26	20	205	20.2%	40.6	9.3	0.4	2.8	60.4	127.8	7.1	1.0	4.1	0.5	1.3	0.1	1.3	0.1	14.5
	20		2.0	2011/0			0.0	2.0		.2.10				0.0		0.2			

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr₀O₁₁ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	27	28	1,169	(%) 20.5%	173.8	51.2	2.4	11.9	267.4	523.3	29.3	6.4	18.7	2.1	5.7	0.8	5.3	0.8	69.5
	28	29	1,774	20.0%	257.8	79.5	3.0	14.5	422.2	809.5	40.8	7.9	23.5	2.6	7.1	1.0	6.8	1.0	96.8
	29	30	273	20.3%	40.1	12.0	0.6	2.7	61.2	125.3	7.1	1.4	4.7	0.5	1.3	0.2	1.2	0.2	14.2
	30 31	31 32	1,977 563	20.5% 20.0%	291.6 83.5	83.0 25.4	5.2 0.9	25.7 3.1	472.6 137.2	825.5 273.9	52.0 12.5	13.4 2.8	39.3 6.4	4.6 0.5	12.0 1.2	1.6 0.2	10.6 1.0	1.5 0.1	138.4 14.2
	31	33	334	19.8%	48.8	25.4 14.9	0.9	2.2	81.9	159.7	8.0	1.7	4.3	0.5	0.9	0.2	0.9	0.1	14.2
	33	34	497	20.0%	73.5	22.8	0.6	2.4	119.6	245.7	10.9	2.5	5.2	0.4	0.9	0.1	0.8	0.1	11.1
	34	35	462	20.0%	68.7	20.5	0.6	2.3	111.1	227.3	10.3	2.2	4.9	0.4	0.9	0.1	0.9	0.1	11.3
	35 36	36 40	825 615	19.9%	122.5	36.9	0.9	3.9 3.0	195.9 146.6	410.3 304.6	17.6	2.9 2.0	8.4 6.4	0.6 0.5	1.7	0.3 0.2	1.7	0.3 0.2	21.3 15.4
	40	40 44	505	20.0% 20.1%	91.0 75.1	28.4 23.0	0.7 0.7	3.0	146.6	250.6	13.9 11.4	2.0	6.4 5.4	0.5	1.3 1.3	0.2	1.2 1.3	0.2	15.4
	44	45	369	20.2%	54.4	17.2	0.6	2.7	84.1	180.6	8.4	1.1	4.9	0.4	1.1	0.2	1.1	0.2	12.6
	45	46	540	19.9%	78.3	23.9	0.9	4.3	123.1	260.4	12.6	1.8	7.2	0.7	1.9	0.3	1.9	0.3	22.6
	46	47	801	21.6%	129.5	40.1	0.8	2.9	190.0	393.1	20.1	1.3	9.6	0.4	0.9	0.1	0.7	0.1	11.7
	47	48 49	795 430	20.2%	115.4	33.5	2.1	9.9 5.0	180.6	355.0	20.8	4.3	15.6	1.7	4.1	0.6	3.3	0.5	48.1 25.5
	48 49	49 50	430 338	21.5% 21.9%	66.6 54.0	19.8 16.8	1.1 0.6	5.0 2.6	90.1 72.0	194.1 159.7	12.4 9.0	2.7 1.6	7.7 5.0	0.8 0.5	2.2 1.2	0.3 0.2	1.8 1.0	0.2 0.1	25.5 13.6
	50	51	248	22.0%	39.9	11.8	0.5	2.4	50.9	114.5	7.2	1.5	4.2	0.4	1.1	0.2	1.1	0.1	12.6
	51	52	458	20.7%	70.1	21.9	0.5	2.3	106.4	226.0	9.8	2.5	4.8	0.4	1.0	0.1	0.9	0.1	10.9
	52	53	772	20.8%	119.0	37.3	0.8	3.1	183.0	379.6	17.4	2.9	7.7	0.5	1.5	0.2	1.5	0.2	16.9
	53	54	2,046	21.5%	325.4	104.3	2.0	7.7	479.7	1,004.8	46.7	4.9	20.6	1.3	3.6	0.5	3.4	0.5	41.0
	54 55	55 56	744 344	21.1% 20.4%	116.3 51.2	36.5 16.2	0.8 0.5	3.4 2.3	175.9 82.2	361.1 162.1	17.2 8.1	3.1 2.7	8.1 4.7	0.6 0.4	1.5 0.9	0.2 0.1	1.4 0.9	0.2 0.1	17.7 11.6
	56	57	426	21.6%	67.7	20.3	0.7	3.3	95.2	199.0	11.0	2.4	6.1	0.5	1.5	0.2	1.3	0.1	16.9
	57	58	543	21.7%	86.9	26.6	0.8	3.4	125.5	255.5	13.1	3.0	6.8	0.6	1.5	0.2	1.4	0.2	17.9
	58	59	797	21.1%	122.5	38.3	1.3	6.6	173.6	372.2	19.5	3.0	10.6	1.3	4.2	0.7	5.4	0.9	37.5
	59 60	60	420 968	21.5% 20.3%	65.9	20.2	0.8	3.5 7.2	92.7 231.0	196.5 458.2	10.8	1.8	6.3 13.0	0.6	1.7 3.0	0.2	1.7 2.8	0.2	17.3
	60 61	61 62	966 576	20.3%	142.3 84.2	45.7 26.5	1.6 1.0	7.2 4.9	137.2	456.2 270.2	22.5 13.7	3.5 2.0	8.2	1.2 0.8	2.1	0.4 0.3	2.0	0.4 0.3	34.9 22.6
	62	63	343	20.3%	50.6	15.3	0.7	3.2	81.3	158.5	8.3	1.3	5.5	0.5	1.5	0.2	1.3	0.2	14.7
	63	64	1,037	22.2%	168.0	51.2	2.0	8.6	232.2	476.6	27.6	3.1	15.8	1.5	3.9	0.5	3.6	0.5	41.7
	64	65	946	21.6%	149.3	45.8	1.6	7.5	215.8	439.8	23.2	3.0	13.3	1.3	3.7	0.5	3.5	0.5	37.3
	65 66	66 67	569 454	21.1%	87.8	27.5	0.9	4.1 3.1	132.5 103.8	267.8 212.5	14.1	2.7 2.0	7.8	0.7 0.5	1.8	0.3	1.6	0.2 0.2	19.3 13.8
	66 67	68	434 538	22.1% 21.6%	73.9 85.8	22.6 25.0	0.7 1.0	4.4	124.3	212.5	12.1 14.4	3.6	6.5 8.3	0.5	1.3 1.8	0.2 0.3	1.1 1.7	0.2	21.5
	68	72	665	21.7%	107.1	31.3	1.2	5.0	159.5	299.7	17.2	3.9	10.4	0.8	2.1	0.3	1.6	0.2	24.4
	72	73	330	20.9%	51.1	14.9	0.5	2.5	81.0	148.6	8.0	2.4	5.0	0.4	1.1	0.1	0.9	0.1	13.7
	73	74	575	20.4%	86.5	26.3	0.8	3.8	138.4	266.6	14.0	2.7	8.0	0.6	1.8	0.2	1.7	0.2	23.0
	74 75	75 76	584 732	21.2% 20.5%	91.9 110.0	28.5 34.9	0.8 1.0	2.9 4.0	136.0 177.1	280.1 348.9	14.7 17.4	2.0 2.4	7.2 9.5	0.5 0.7	1.2 1.8	0.2 0.2	1.1 1.5	0.1 0.2	17.1 22.9
	76	70	779	20.5%	117.8	36.7	1.0	4.0	188.8	374.7	18.0	2.4	9.8	0.7	1.7	0.2	1.3	0.2	21.3
	77	78	1,410	21.0%	218.1	69.1	1.6	6.6	342.5	667.0	33.4	3.0	17.2	1.2	3.1	0.4	2.6	0.4	43.9
NEORB004	0	4	455	21.8%	73.2	22.2	0.7	3.0	103.7	215.0	11.2	1.6	5.9	0.5	1.2	0.2	1.1	0.1	15.7
NEOHB004	4	8	621	20.9%	95.6	30.7	0.7	2.7	144.3	308.3	15.0	2.1	6.8	0.3	1.2	0.2	0.9	0.1	12.3
	8	9	419	20.3%	62.5	20.2	0.5	2.1	98.3	208.8	9.9	1.1	5.0	0.3	0.8	0.1	0.5	0.1	9.1
	9	10	406	20.4%	60.9	19.3	0.5	2.1	95.2	201.5	9.6	1.2	4.8	0.3	0.8	0.1	0.6	0.1	9.4
	10	11	537	20.2%	80.2	26.2	0.5	1.8	130.2	270.2	12.1	1.4	5.3	0.2	0.6	0.1	0.4	0.1	7.7
	11 12	12 13	412 465	20.7% 20.8%	63.7 71.9	20.2 23.0	0.3 0.4	1.1 1.6	99.5 109.2	206.4 234.6	9.6 10.4	1.2 1.2	3.9 5.0	0.2 0.2	0.4 0.6	0.0 0.1	0.3 0.3	0.0 0.1	5.2 6.5
	12	13	405 648	20.8%	101.6	23.0 32.7	0.4	1.6	109.2	234.6 325.5	10.4	1.2	5.0 6.2	0.2	0.6	0.1	0.3	0.1	6.5 7.9
	14	15	269	21.1%	42.3	13.3	0.2	0.7	64.2	135.1	5.9	0.7	2.6	0.1	0.2	0.0	0.1	0.0	3.1
	15	16	503	21.0%	77.9	24.9	0.6	2.2	117.3	250.6	12.1	1.1	5.9	0.3	0.7	0.1	0.5	0.1	8.5
	16	20	372	21.1%	58.6	18.5	0.4	1.3	88.8	185.5	8.5	0.8	3.9	0.2	0.4	0.0	0.3	0.0	5.2
	20	24	374	21.0%	58.1	18.7	0.4	1.3	89.4	185.5	9.0	0.9	4.3	0.2	0.4	0.0	0.3	0.0	5.0
	24 25	25 26	653 283	21.5% 21.3%	105.0 45.1	33.2 13.9	0.6 0.3	1.8 0.9	157.2 67.7	324.3 140.0	15.1 6.5	1.0 0.7	7.0 3.1	0.3 0.1	0.5 0.3	0.1 0.0	0.4 0.2	0.1 0.0	6.8 4.0
	26	20	203	19.9%	29.6	9.6	0.3	0.9	50.3	99.9	4.6	0.7	2.2	0.1	0.3	0.0	0.2	0.0	2.7
																			1

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO (%)	Nd₂O₃ (ppm)	Pr₀O₁₁ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	27	28	760	21.4%	120.1	38.2	1.0	3.3	167.7	382.0	19.7	1.5	10.1	0.5	1.1	0.1	1.0	0.2	13.2
	28 29	29 30	521 956	21.9% 21.4%	84.8 152.8	26.7 48.6	0.6 0.8	1.9 2.2	116.2 229.9	261.6 479.1	14.4 21.7	1.0 1.4	6.8 10.1	0.3 0.3	0.5 0.7	0.0 0.1	0.3 0.4	0.0 0.1	6.0 8.0
	30	31	888	21.4%	143.5	44.9	0.7	2.2	209.9	449.6	19.9	1.4	8.5	0.3	0.7	0.1	0.4	0.1	6.7
	31	32	978	22.2%	162.1	51.6	0.8	2.2	239.3	477.8	23.0	1.3	10.0	0.3	0.7	0.1	0.5	0.1	8.6
	32	33	695	21.3%	111.0	34.9	0.6	1.6	166.5	348.9	15.9	1.2	6.9	0.2	0.5	0.1	0.4	0.1	6.4
	33 34	34 35	432 637	21.1% 21.1%	68.2 99.7	21.5 31.9	0.4 0.6	1.1 1.9	105.8 152.5	215.0 319.4	9.9 14.6	1.0 1.3	4.4 6.8	0.1 0.2	0.3 0.5	0.0 0.1	0.2 0.3	0.0 0.0	4.0 6.8
	34	36	207	20.9%	32.3	10.1	0.0	0.7	50.8	102.0	4.8	0.7	2.3	0.2	0.5	0.1	0.3	0.0	2.7
	36	40	310	21.5%	49.8	15.5	0.3	1.2	71.8	154.8	7.0	1.2	3.4	0.2	0.4	0.0	0.2	0.0	4.4
	40	44	393	20.8%	60.5	19.5	0.4	1.4	93.8	195.3	8.8	1.7	4.3	0.2	0.5	0.0	0.3	0.0	5.8
	44	45	333	20.9%	51.9	16.4	0.3	1.1	81.2	163.4	7.5	1.7	3.5	0.2	0.4	0.0	0.3	0.0	5.2
	45 46	46 47	273 767	21.2% 21.6%	43.0 123.6	13.7 38.5	0.3 0.8	0.9 3.1	64.6 178.3	135.1 378.3	6.4 18.9	1.1 1.4	2.9 9.4	0.1 0.4	0.4 1.0	0.0 0.1	0.3 0.8	0.0 0.1	4.2 12.3
	40	48	986	22.1%	163.3	50.1	1.1	3.8	224.0	485.2	25.0	2.8	11.8	0.4	1.3	0.2	1.0	0.1	15.9
	48	49	591	22.2%	97.7	29.7	0.8	3.1	129.0	288.7	14.7	3.8	7.5	0.5	1.3	0.2	1.2	0.2	12.5
	49	50	556	22.2%	92.1	28.0	0.7	2.6	122.0	272.7	14.0	3.4	6.8	0.4	1.1	0.2	1.0	0.2	11.3
	50	51	531	21.5%	84.0	26.7	0.7	2.9	118.5	259.2	13.3	3.3	6.7	0.4	1.3	0.2	1.1	0.2	13.1
	51 52	52 53	765 554	22.5% 22.3%	128.3 91.7	39.1 27.8	1.0 0.7	4.0 3.1	168.9 120.8	364.8 266.6	20.2 15.0	6.5 4.5	10.5 7.7	0.7 0.5	1.8 1.2	0.2 0.2	1.6 0.9	0.2 0.1	17.4 13.0
	53	54	561	21.7%	89.6	28.9	0.7	2.7	130.2	271.5	13.9	3.5	6.7	0.4	1.1	0.1	1.0	0.1	10.8
	54	55	440	21.5%	70.3	21.7	0.6	2.1	104.6	211.3	11.3	2.0	6.0	0.3	0.8	0.1	0.8	0.1	8.4
	55	56	427	21.5%	68.5	21.1	0.4	1.6	101.7	208.8	10.5	2.0	5.0	0.2	0.5	0.1	0.4	0.1	6.2
	56	60 64	418	21.5%	67.1	20.5	0.5	1.8	101.1	201.5	10.3	1.6	5.3	0.3	0.6	0.1	0.4	0.1	7.1
	60 64	65	157 205	21.1% 21.3%	24.7 32.0	7.5 9.6	0.2 0.4	0.6 1.8	36.7 42.8	76.8 94.5	3.6 5.3	0.8 1.4	1.9 3.2	0.1 0.4	0.3 1.0	0.0 0.1	0.1 0.8	0.0 0.1	3.4 12.1
	65	66	59	20.1%	8.3	2.2	0.2	1.2	10.6	20.1	1.7	0.8	1.5	0.3	0.8	0.1	0.6	0.1	10.4
	66	67	434	20.4%	65.0	20.1	0.7	3.0	101.8	201.5	9.9	2.7	5.9	0.5	1.5	0.2	1.0	0.2	20.7
	67	68	2,045	17.5%	239.1	56.5	10.1	52.6	445.7	536.8	47.7	26.1	77.0	10.8	29.3	3.2	17.4	3.0	490.2
	68 69	69 70	363 281	20.6% 21.1%	51.9 43.4	13.7 12.9	1.6 0.5	7.8 2.3	67.8 60.8	132.7 130.2	11.7 7.0	3.7 1.7	11.1 4.3	1.4 0.4	3.6 1.1	0.5 0.1	2.7 0.8	0.5 0.1	52.4 14.9
	70	70	258	21.1%	43.4	12.9	0.3	0.9	59.8	127.8	6.0	1.1	2.8	0.4	0.4	0.1	0.8	0.1	5.5
	71	72	411	21.6%	66.3	20.2	0.5	1.7	93.0	201.5	10.2	1.7	5.2	0.3	0.6	0.1	0.4	0.1	9.5
	72	73	427	21.1%	67.1	20.5	0.6	2.0	95.5	208.8	11.1	2.7	5.7	0.3	0.7	0.1	0.5	0.1	11.2
	73	74	581	22.3%	97.0	26.7	1.1	4.5	130.2	262.9	15.9	3.8	9.9	0.7	1.6	0.2	1.0	0.2	24.9
	74 75	75 76	621 676	24.8% 20.4%	114.0 102.6	35.9 31.7	0.8 0.8	3.2 2.9	132.5 157.2	288.7 335.4	15.5 15.9	3.2 2.7	8.3 7.7	0.5 0.5	1.2 1.1	0.1 0.1	0.7 0.7	0.1 0.1	16.8 16.5
	75	70	1,133	20.4%	185.5	57.0	1.3	4.9	263.9	544.2	27.9	3.4	12.9	0.5	2.0	0.1	1.5	0.1	26.8
	77	78	405	20.8%	62.8	18.8	0.6	2.3	93.7	196.5	10.0	2.0	5.2	0.4	0.9	0.1	0.6	0.1	11.4
	0		400	00.70/	70.0	00.0	0.0	0.5	1145	000.4	11.0	10	6.4	0.6	1 5	0.0	1.0	0.0	10.0
NEORB005	0 4	4 8	488 935	20.7% 20.9%	73.9 145.8	23.0 44.6	0.8 1.1	3.5 4.1	114.5 220.5	233.4 465.6	11.0 19.9	1.3 1.9	6.4 10.0	0.6 0.6	1.5 1.4	0.2 0.2	1.0 0.9	0.2 0.1	16.6 18.0
	8	9	875	20.6%	133.0	41.8	1.0	4.2	205.2	437.3	17.5	1.8	9.1	0.7	1.8	0.2	1.2	0.2	19.6
	9	10	781	20.9%	121.3	37.8	0.9	3.5	180.6	391.9	16.1	1.8	8.1	0.6	1.3	0.2	1.0	0.2	15.9
	10	11	796	21.3%	126.0	39.0	0.9	3.2	184.1	398.0	17.5	2.1	8.5	0.5	1.1	0.1	0.8	0.1	13.6
	11 12	12 13	745 1,063	21.5% 21.5%	120.1 170.3	36.5 52.8	0.8 1.2	2.9 4.2	173.6 255.7	369.7 518.4	17.5	1.5	8.0 11.6	0.4 0.6	0.9	0.1 0.1	0.6	0.1 0.1	11.7 16.8
	12	13	615	21.5%	98.8	29.2	1.2	4.2	123.1	282.5	25.4 17.4	3.0 2.8	11.0	1.2	1.4 3.0	0.1	1.0 2.1	0.1	34.8
	14	15	252	21.2%	39.4	12.2	0.4	1.5	57.6	121.9	6.3	0.9	3.2	0.3	0.6	0.4	0.5	0.0	7.4
	15	16	163	20.4%	24.3	7.8	0.3	1.0	37.8	79.8	4.4	0.7	2.3	0.1	0.4	0.0	0.3	0.0	4.3
	16	20	377	20.5%	57.6	17.9	0.4	1.4	90.5	189.2	8.2	1.3	3.9	0.2	0.5	0.1	0.3	0.1	5.7
	20 24	24 28	604 687	20.1% 20.3%	89.0 103.3	27.5 32.9	0.9 0.8	3.9 2.6	145.4 164.2	293.6 341.5	12.8 15.2	1.8 2.3	7.4 7.4	0.6 0.4	1.6	0.2 0.1	1.2 0.8	0.2 0.1	17.7 14.6
	24 28	20 29	555	20.3%	85.7	27.3	0.8	2.6	104.2	278.8	15.2	2.3	7.4 5.0	0.4	1.1 0.6	0.1	0.8	0.1	9.3
	29	30	342	20.7%	52.1	16.9	0.3	1.4	73.7	175.7	7.1	1.6	3.3	0.2	0.6	0.1	0.4	0.1	8.3
	30	31	2,223	21.9%	356.9	110.2	3.7	16.2	484.4	1,047.8	56.4	11.1	30.1	2.8	7.2	0.9	5.1	0.8	89.1
	31	32	3,766	24.8%	702.2	187.3	8.0	36.0	828.0	1,609.2	111.0	21.8	70.7	6.1	16.6	2.1	12.9	1.8	152.4
	32 33	33 34	415	19.9%	60.4	17.2	0.9	4.1	96.9 24.0	181.8	9.7	1.7	6.9	0.8	2.3	0.3	2.0 0.9	0.4	29.5
	33	34	124	21.4%	19.4	5.6	0.3	1.3	24.9	54.9	4.5	0.6	2.9	0.2	0.8	0.1	0.9	0.2	7.7

Hole ID	From	То	TREO	MREO:	Nd ₂ O ₃	Pr ₆ O ₁₁	Tb ₄ O ₇	Dy ₂ O ₃	La ₂ O ₃	CeO ₂	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃
	(m)	(m)	(ppm)	TREO (%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	34	35	94	21.4%	14.7	4.4	0.2	0.8	20.4	41.6	3.5	0.7	2.3	0.1	0.4	0.1	0.5	0.1	4.3
NEORB006	0	4	320	21.8%	51.8	15.7	0.5	1.8	75.4	149.9	8.2	0.8	4.6	0.3	0.8	0.1	0.7	0.1	9.4
	4	8	359	20.9%	56.1	17.8	0.3	0.9	90.8	175.7	8.3	0.7	3.9	0.1	0.3	0.0	0.1	0.0	3.6
	8	12	438	21.4%	70.5	21.7	0.4	1.1	110.5	212.5	10.1	1.0	4.6	0.2	0.3	0.0	0.2	0.0	4.7
	12 16	16	316 206	21.4% 19.9%	50.6	15.8 9.9	0.3	0.8	78.3	154.8	7.3	0.7 0.9	3.4	0.1	0.2 0.3	0.0 0.0	0.1	0.0	3.2
	20	20 24	206 276	21.5%	30.2 44.2	9.9 14.0	0.2 0.3	0.7 0.8	51.8 66.3	101.7 136.4	4.7 6.8	1.2	2.2 3.0	0.1 0.1	0.3	0.0	0.2 0.1	0.0 0.0	3.1 2.9
	24	28	435	20.3%	65.8	20.8	0.4	1.2	111.8	213.7	9.9	1.0	4.6	0.2	0.4	0.0	0.2	0.0	4.9
	28	29	109	20.4%	16.6	5.2	0.1	0.4	27.9	52.6	2.6	0.5	1.3	0.1	0.1	0.0	0.1	0.0	1.8
	29	30	371	21.6%	59.8	18.7	0.4	1.2	88.4	181.8	9.5	1.4	4.3	0.2	0.4	0.0	0.3	0.0	4.8
	30	31	178	20.4%	26.9	8.6	0.2	0.6	45.4	86.5	4.0	0.8	1.9	0.1	0.2	0.0	0.1	0.0	2.3
	31 32	32 33	351 280	21.5% 20.7%	56.5 43.2	17.6	0.4 0.3	1.1 0.8	85.4 70.0	172.0 137.6	8.4 6.7	0.7 0.8	3.8	0.1 0.1	0.3	0.0 0.0	0.2 0.1	0.0 0.0	4.8 3.2
	32	33 34	200	20.7%	43.2 147.0	13.7 52.0	1.0	3.5	344.8	581.0	18.4	2.6	3.1 8.9	0.1	0.2 1.5	0.0	1.1	0.0	3.2 17.9
	34	35	919	20.2%	136.5	44.3	1.0	3.4	238.1	444.7	18.6	2.3	9.0	0.6	1.5	0.2	1.1	0.1	17.9
	35	36	756	19.8%	109.8	35.8	0.9	3.2	195.9	367.3	15.0	1.7	8.0	0.5	1.4	0.2	1.0	0.1	15.0
	36	37	792	19.8%	115.6	37.0	0.9	3.4	207.6	382.0	15.7	1.9	8.6	0.6	1.5	0.2	1.1	0.2	15.9
	37	38	879	22.1%	144.6	45.1	1.0	3.6	209.9	422.6	19.5	2.3	9.4	0.6	1.5	0.2	1.1	0.2	17.9
	38	39	877 649	21.5%	141.1	42.9	1.1	3.9	211.1	422.6	19.7	2.3	10.0	0.7	1.7	0.2	1.3	0.2	18.7
	39 40	40 41	649 709	20.1% 21.5%	96.3 112.4	30.7 35.3	0.8 1.0	2.8 3.9	168.9 170.1	310.8 335.4	13.9 16.1	1.9 2.2	7.3 8.7	0.5 0.7	1.1 1.8	0.1 0.2	0.7 1.5	0.1 0.2	13.5 19.6
	41	42	931	21.1%	144.6	46.4	1.0	4.2	226.4	449.6	19.9	3.3	10.1	0.7	1.7	0.2	1.3	0.2	21.1
	42	43	1,185	22.8%	200.6	62.0	1.6	5.5	258.0	577.3	29.6	5.5	13.5	1.0	2.4	0.3	1.9	0.3	25.5
	43	44	1,220	22.3%	203.0	62.0	1.6	6.0	267.4	595.8	28.2	5.2	14.1	1.0	2.8	0.4	2.5	0.4	29.3
	44	45	1,455	21.1%	227.4	71.5	1.9	6.7	348.3	707.6	31.2	4.5	16.3	1.1	3.2	0.4	2.7	0.4	31.4
	45	46	1,899	19.5%	269.4	89.6	2.5	8.9	491.4	921.3	41.7	9.1	19.9	1.5	3.9	0.5	3.3	0.5	35.4
	46 47	47 48	1,016 916	25.5% 21.0%	191.3 141.1	56.2 42.4	2.3 1.9	8.7 7.0	172.4 217.0	472.9 420.1	35.9 26.2	9.4 7.2	19.1 15.7	1.4 1.2	3.8 3.1	0.5 0.4	3.0 2.4	0.4 0.3	38.2 30.2
	47	40 49	1,023	18.6%	137.6	42.4	1.9	6.9	282.6	420.1	20.2	6.7	14.3	0.9	2.4	0.4	1.7	0.3	24.6
	49	50	1,014	20.3%	149.3	44.8	2.4	9.5	241.6	450.8	26.6	8.6	19.8	1.7	4.5	0.6	3.4	0.5	50.2
	50	51	909	23.4%	156.3	46.0	2.2	8.0	180.6	421.3	29.1	8.5	18.2	1.3	3.3	0.5	2.7	0.4	30.9
	51	52	455	24.2%	81.5	23.7	1.1	3.9	85.1	212.5	15.5	4.5	9.4	0.6	1.5	0.2	1.3	0.2	14.3
	52	53	693	24.8%	128.3	36.7	1.6	5.3	129.0	324.3	23.7	6.5	13.7	0.8	1.9	0.3	1.5	0.2	19.3
	53 54	54	394 534	23.0%	67.4	19.6	0.8	2.8	84.8	181.8	11.8	3.4	7.2	0.4	1.1	0.1	0.8	0.1	11.8
	54 55	55 56	534 610	23.2% 23.3%	92.1 105.4	26.2 29.1	1.3 1.4	4.4 5.9	112.7 131.4	242.0 270.2	17.2 18.6	4.4 4.9	11.2 12.8	0.7 0.9	1.8 2.0	0.2 0.3	1.5 1.5	0.2 0.2	18.0 25.1
	56	60	381	23.7%	66.8	18.1	1.0	4.3	81.4	163.4	12.1	3.3	9.1	0.6	1.6	0.2	1.5	0.2	17.5
	60	61	250	23.7%	43.9	11.9	0.7	2.7	51.3	106.5	9.5	1.5	7.0	0.4	1.1	0.2	1.1	0.2	11.8
	61	62	319	25.0%	59.3	15.2	1.0	4.3	65.2	129.0	11.7	2.9	9.2	0.6	1.7	0.2	1.4	0.2	17.7
	62	63	721	24.9%	133.0	34.9	2.1	9.3	145.4	294.8	24.9	6.0	18.4	1.4	3.5	0.5	3.0	0.4	43.2
	63 64	64 65	605 369	24.6% 21.4%	109.6 57.7	28.9 17.2	1.7 0.7	8.4 3.4	122.0 79.2	243.2 169.5	20.2 9.3	5.0 1.5	15.1 5.8	1.4 0.6	3.4 1.6	0.4 0.2	2.7 1.3	0.4 0.2	42.4 20.8
NEORB007	0	4	354	21.6%	56.8	17.8	0.4	1.4	84.4	173.2	7.9	1.1	3.7	0.2	0.5	0.1	0.4	0.1	6.0
	4 5	5 6	1,413 508	21.3% 21.9%	227.4 83.7	69.6 25.6	1.0 0.4	3.3 1.4	351.8 122.0	700.2 250.6	29.7 11.3	2.4 1.2	12.3 4.7	0.4 0.2	1.1 0.5	0.1 0.1	0.8 0.4	0.1 0.1	12.6 5.6
	5 6	7	508 612	21.9%	98.6	25.0 30.4	0.4	1.4	122.0	250.6	13.2	1.2	4.7 5.2	0.2	0.5	0.1	0.4	0.1	5.6
	7	8	367	21.0%	57.7	18.0	0.3	1.1	91.2	180.6	8.2	1.1	3.7	0.1	0.3	0.0	0.2	0.0	4.4
	8	12	399	20.8%	61.7	19.7	0.4	1.3	99.2	196.5	8.2	1.4	3.7	0.2	0.5	0.1	0.4	0.1	6.1
	12	16	147	19.3%	20.9	6.7	0.2	0.6	39.2	70.8	3.0	1.4	1.4	0.1	0.2	0.0	0.1	0.0	2.3
	16	20	322	20.9%	48.6	15.1	0.6	3.2	74.8	148.6	7.5	1.1	4.5	0.5	1.5	0.2	1.4	0.2	14.5
لأكريهم	20	21	279 299	23.4%	47.2	13.5	0.8	3.7	53.9	120.1	8.1	1.5	5.5	0.7	2.0 2.0	0.3 0.3	2.0	0.3	19.3
لأكريهم	21 22	22 23	299 281	24.3% 24.0%	52.5 49.2	14.9 13.8	0.9 0.8	4.4 3.8	56.8 54.2	129.0 124.1	9.1 8.7	1.8 1.6	6.4 6.1	0.7 0.6	2.0	0.3	1.7 1.4	0.3 0.2	18.5 14.9
لأكريهم	22	23 24	255	24.0%	49.2	13.8	0.8	3.0	52.3	124.1	8.0	1.0	5.6	0.0	1.5	0.2	1.4	0.2	14.9
	24	28	252	23.9%	44.0	12.6	0.6	2.9	52.2	111.2	7.6	1.0	5.5	0.4	1.1	0.1	1.2	0.2	11.2
	28	32	253	23.8%	44.1	12.8	0.7	2.9	51.8	112.3	7.6	1.1	5.3	0.5	1.1	0.2	1.1	0.2	11.8

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO (%)	Nd₂O₃ (ppm)	Pr₅O₁₁ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	32	36	367	23.0%	61.8	18.1	0.7	3.5	76.9	170.7	9.9	1.2	6.2	0.5	1.5	0.2	1.3	0.2	13.7
	36 40	40 41	274 1,049	23.3% 22.0%	46.7 165.6	13.5 47.1	0.7 2.8	3.0 15.1	59.8 224.0	122.8 442.2	8.0 26.6	1.4 5.1	6.0 21.7	0.4 2.7	0.9 7.1	0.1 0.9	0.7 6.0	0.1 0.9	9.9 81.0
	41	42	294	23.1%	49.9	14.1	0.7	3.1	62.9	132.7	8.7	1.6	5.9	0.4	1.0	0.3	0.8	0.3	11.6
	42	43	964	21.1%	142.3	39.9	3.1	17.8	199.4	378.3	24.0	4.7	21.7	3.3	9.2	1.2	7.6	1.2	110.4
	43	44	282	23.0%	47.6	13.5	0.7	3.0	60.0	126.5	8.1	1.5	5.5	0.4	1.0	0.1	0.8	0.1	12.5
	44	48	304	22.5%	49.7	14.5	0.7	3.4	66.3	137.6	8.3	1.3	5.7	0.5	1.3	0.2	1.2	0.2	13.5
	48 49	49 50	873 635	24.4% 24.1%	156.3 112.0	44.1 32.4	2.2	10.2 7.4	170.1 125.5	386.9 285.0	26.4	5.2 3.4	17.1	1.7 1.2	4.3 3.1	0.5 0.4	3.7 3.0	0.5 0.4	44.2 29.7
	49 50	50 51	531	24.1%	87.6	26.3	1.4 1.1	5.8	125.5	265.0	18.4 14.3	2.4	11.5 8.7	1.2	2.6	0.4	2.3	0.4	29.7
	51	52	510	24.2%	90.0	25.6	1.3	6.7	98.0	224.8	15.0	2.9	9.8	1.0	2.7	0.4	2.3	0.4	29.3
	52	56	504	24.2%	88.4	25.5	1.3	6.8	95.3	222.3	15.0	3.1	9.6	1.1	2.9	0.4	2.5	0.4	28.8
	56	57	1,002	23.4%	170.3	53.2	1.9	9.3	197.0	475.4	26.3	4.5	14.8	1.5	4.0	0.5	3.2	0.4	39.5
	57	58	977	24.6%	176.1	49.5	2.6	12.2	192.3	427.5	30.6	7.0	19.8	2.0	4.8	0.6	3.9	0.5	47.0
	58 59	59 60	540 308	24.1% 23.0%	94.7 50.9	26.6 14.3	1.5 0.9	7.3	110.8	233.4	17.5 9.7	3.4 1.9	11.5 6.8	1.2 0.8	2.9	0.4 0.3	2.6	0.4	25.7
	59 60	60 61	838	23.0%	50.9 127.1	36.7	2.5	4.7 13.9	61.7 171.2	126.5 331.7	9.7 23.5	4.4	0.0 19.6	2.7	2.4 7.4	1.0	2.1 6.0	0.3 0.9	24.3 89.9
	61	62	723	23.2%	120.1	34.2	2.2	10.9	143.1	302.2	22.8	4.0	15.9	1.9	5.3	0.7	4.7	0.3	54.2
	62	63	497	22.9%	80.9	23.1	1.6	8.1	96.9	210.1	15.4	3.2	11.6	1.4	3.9	0.5	3.5	0.5	36.4
NEORB008	0	4	335	20.9%	49.7	15.0	0.9	4.5	73.9	147.4	8.8	1.5	6.2	0.8	2.2	0.3	1.9	0.3	22.1
	4	8	202	22.5%	32.2	9.4	0.6	3.3	40.3	86.4	6.0	1.0	4.5	0.6	1.7	0.3	1.8	0.3	13.7
	8 12	12 13	452	21.8%	70.1	21.3	1.2	5.8 6.5	94.8	202.7	13.0	2.4	8.3	1.0	2.6	0.3	2.0	0.3	25.8 26.2
	12	13	1,263 879	19.8% 21.1%	178.5 133.0	63.6 42.3	1.5 1.7	0.5 8.6	315.5 207.6	625.3 402.9	24.4 19.5	4.4 4.4	11.9 13.6	1.0 1.4	2.4 3.3	0.3 0.3	1.5 1.9	0.2 0.3	26.2 38.1
	14	15	701	21.1%	104.6	30.0	2.2	11.7	150.1	285.0	18.8	5.1	15.6	2.1	5.8	0.8	4.7	0.6	64.0
	15	16	1,104	21.7%	172.6	52.3	2.3	11.8	252.2	488.9	27.8	6.2	18.4	2.0	5.3	0.7	4.3	0.6	58.2
	16	20	910	21.2%	141.1	43.6	1.5	7.0	206.4	428.7	21.9	4.9	12.7	1.1	3.0	0.4	2.2	0.3	34.7
	20	24	550	22.3%	90.7	28.0	0.8	3.1	124.3	265.3	13.5	1.5	6.8	0.5	1.1	0.1	0.8	0.1	13.8
	24	28	540	23.1%	90.7	27.2	1.3	5.3	112.5	245.7	16.5	2.8	10.0	0.8	1.9	0.2	1.3	0.2	23.6
	28 29	29 30	399 395	24.5%	71.9 70.5	20.1	1.1	4.6	80.9	176.9 176.9	12.6	2.3	9.0 8.8	0.7 0.6	1.4 1.3	0.1	1.0 0.8	0.1 0.1	15.9 14.7
	29 30	30	395 810	24.2% 23.7%	70.5 141.1	19.9 40.4	1.1 2.1	4.4 8.5	81.2 168.9	364.8	12.9 26.4	2.2 4.6	0.0 17.4	1.1	2.4	0.2 0.2	1.4	0.1	29.8
	31	32	393	24.1%	69.6	19.6	1.1	4.4	82.2	174.4	12.9	2.4	9.3	0.6	1.3	0.1	0.7	0.1	14.5
	32	36	228	22.1%	36.3	10.7	0.6	2.6	49.0	101.6	6.5	1.6	4.7	0.4	1.0	0.1	0.9	0.1	11.4
	36	37	480	23.8%	82.9	23.6	1.5	6.4	94.5	208.8	16.0	3.3	11.8	0.9	2.2	0.3	1.5	0.2	25.8
	37	38	762	23.5%	131.8	37.9	1.9	7.7	161.8	341.5	24.7	4.5	16.1	1.0	2.5	0.3	3.0	0.3	27.3
	38 39	39 40	514 564	24.1% 23.3%	90.0	25.6	1.6	6.7 6.0	104.4 118.5	222.3 255.5	16.9	3.5	12.0	1.0	2.3 2.0	0.3	1.7	0.2 0.2	25.5 23.1
	40	40	504 603	23.3%	96.1 95.1	28.2 29.0	1.4 1.6	7.5	130.2	255.5	16.6 16.6	3.4 4.2	10.9 12.0	0.9 1.1	2.0	0.2 0.3	1.5 2.3	0.2	28.8
	41	42	896	25.9%	165.6	43.1	4.1	19.5	152.5	350.1	36.1	12.4	27.5	3.0	7.7	1.0	7.2	1.0	65.7
	42	43	1,157	28.1%	230.9	57.6	6.2	30.6	177.1	423.8	52.9	19.1	41.7	4.8	11.7	1.6	10.8	1.4	86.6
	43	44	975	27.6%	193.6	47.5	4.8	22.8	157.2	369.7	42.7	14.6	33.0	3.5	8.7	1.1	7.9	1.0	67.1
	44	45	687	25.6%	127.1	33.8	2.6	12.5	123.1	282.5	25.7	7.5	19.6	1.8	4.6	0.6	4.2	0.5	40.9
	45	46 47	910 516	27.5%	178.5	45.9	4.3	21.2	146.6	350.1	38.5	12.5	29.9	3.3	8.2	1.1	7.1	1.0	62.2
	46 47	47 48	516 504	27.3% 27.4%	101.0 97.3	25.1 24.0	2.5 2.8	12.1 13.9	83.4 75.3	196.5 183.0	22.0 22.5	7.1 8.4	17.2 19.5	1.9 2.1	4.8 5.5	0.6 0.8	4.3 5.1	0.5 0.7	36.7 43.2
	47	40 49	504 641	27.4%	124.8	30.4	3.8	17.8	92.7	229.7	22.5	11.1	25.8	2.1	7.0	1.0	6.6	0.7	43.2 57.1
	49	50	751	26.6%	140.0	34.9	4.2	20.3	116.0	271.5	31.4	11.7	29.5	3.3	8.2	1.2	7.3	1.0	70.6
	50	51	654	25.3%	116.1	29.8	3.4	16.4	111.4	244.5	25.5	8.7	24.4	2.7	6.7	1.0	5.9	0.8	56.8
	51	52	493	25.6%	85.8	21.0	3.1	16.4	74.2	162.1	19.4	7.6	21.0	2.8	7.5	1.1	6.9	0.9	63.2
	52	53	529	26.2%	95.3	23.0	3.2	17.1	74.5	175.7	21.5	8.6	23.4	2.9	8.0	1.1	6.8	0.9	67.1
	53 54	54 55	481 173	26.8%	90.9	23.1	2.6	12.4 2.3	72.0 38.0	173.2	20.9	7.9 0.9	18.9 3.7	2.1	5.6	0.8	4.9	0.7	44.6
	54 55	55 56	200	20.9% 20.7%	25.4 28.9	7.8 9.0	0.5 0.6	2.3	38.0 42.7	74.6 84.3	4.9 5.6	0.9	3.7 4.3	0.4 0.6	1.1 1.9	0.2 0.3	1.2 2.2	0.2 0.3	11.3 15.7
	56	50	320	20.7%	20.9 47.9	9.0 14.3	0.0	5.1	65.1	132.7	9.4	1.6	4.3 7.0	1.0	3.1	0.3	3.4	0.5	27.4
	57	58	233	20.6%	33.7	10.4	0.7	3.3	51.7	99.3	6.9	1.6	5.4	0.6	1.7	0.3	1.7	0.3	15.7
	58	59	254	20.6%	36.7	11.3	0.8	3.5	54.2	107.9	7.7	1.6	5.5	0.7	1.8	0.3	1.8	0.3	19.8

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO (%)	Nd₂O₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	967 308 476 374 448 379 276 479 562 466 425 363 558 433 221 261	19.4% 20.7% 22.5% 22.4% 22.1% 22.3% 21.3% 21.3% 21.5% 21.3% 21.9% 21.7% 21.3% 21.8%	134.1 45.3 76.0 60.3 71.2 60.8 44.6 70.8 84.8 70.8 84.8 70.8 66.7 53.8 87.2 67.7 33.1 40.4	44.3 13.5 22.1 17.3 21.3 17.9 21.9 25.0 20.4 19.0 15.5 26.1 20.5 10.1 11.8	1.6 0.9 1.6 1.2 1.3 1.2 0.9 1.3 1.8 1.4 1.3 1.3 1.5 1.1 0.7 0.8	7.9 4.2 7.5 4.9 5.5 4.6 3.6 5.7 8.4 7.5 6.9 6.9 7.1 4.8 3.0 3.9	245.1 70.4 98.9 79.9 100.6 81.9 57.9 108.0 122.0 93.0 85.7 67.1 119.6 92.3 49.0 54.1	445.9 130.2 196.5 158.5 192.9 165.8 120.1 210.1 235.9 189.2 174.4 140.0 242.0 190.4 93.6 108.0	19.8 9.1 15.3 12.3 13.9 12.2 8.8 13.9 16.1 13.6 11.8 10.5 15.0 11.7 6.5 7.7	3.6 2.0 4.1 2.8 3.3 2.4 1.7 2.6 3.3 2.8 2.8 2.8 2.8 2.3 3.1 1.9 1.1 1.2	12.8 6.7 11.9 9.0 10.4 8.8 6.8 10.3 12.2 10.0 9.4 9.1 11.3 8.1 4.9 5.9	1.4 0.7 1.2 0.8 0.7 0.5 0.9 1.5 1.5 1.5 1.3 1.5 1.3 1.5 1.3 0.9 0.5 0.7	3.9 2.4 3.4 2.1 2.0 2.0 1.3 2.6 4.1 4.4 3.7 4.6 3.4 2.5 1.3 2.4	0.6 0.3 0.5 0.3 0.2 0.2 0.2 0.2 0.4 0.6 0.7 0.5 0.7 0.5 0.3 0.2 0.3	3.9 2.0 3.1 1.9 1.6 1.3 1.2 2.3 3.7 4.4 3.5 4.6 3.1 2.1 1.3 2.3	0.6 0.4 0.5 0.3 0.2 0.2 0.2 0.4 0.5 0.7 0.5 0.7 0.4 0.3 0.2 0.4	41.1 19.8 33.3 22.7 23.0 18.9 15.6 28.1 42.3 45.6 37.3 44.6 36.3 28.3 15.1 21.3
NEORB009	0 4 9 10 11 12 13 14	4 9 10 11 12 13 14 15	358 191 309 334 183 67 276 151 139	20.7% 21.1% 22.2% 21.1% 21.3% 19.9% 21.0% 20.6% 21.8%	54.1 29.3 47.5 50.2 27.4 8.7 41.6 22.3 21.0	17.0 8.9 13.2 15.3 8.1 2.7 12.8 6.8 6.1	0.5 0.4 1.3 0.7 0.6 0.3 0.6 0.3 0.5	2.4 1.7 6.8 4.2 3.0 1.6 3.0 1.7 2.8	87.0 43.0 54.3 73.1 36.6 12.2 60.3 32.8 27.0	167.1 86.1 118.0 147.4 75.4 25.6 125.3 68.5 55.9	8.7 5.5 10.3 8.6 5.3 2.1 7.3 4.1 4.2	1.6 1.2 1.8 1.3 0.8 0.6 1.4 0.8 0.8	4.8 3.4 8.9 6.3 4.2 1.8 4.9 2.6 3.4	0.4 0.3 1.4 0.7 0.6 0.3 0.5 0.3 0.5	1.1 0.9 4.2 2.2 1.7 0.9 1.3 0.7 1.3	0.2 0.1 0.6 0.3 0.3 0.1 0.2 0.1 0.2	1.0 0.7 3.8 2.2 1.7 0.7 1.0 0.6 1.2	0.2 0.1 0.6 0.3 0.3 0.1 0.2 0.1 0.2	12.2 9.1 36.8 21.3 17.3 9.3 15.9 8.9 13.8
NEORB010	0 4 5 6 7 8 9 10	4 5 7 8 9 10 11	207 256 1,240 151 574 292 215 136	20.8% 21.0% 21.1% 21.1% 21.1% 20.7% 20.7% 20.6%	31.7 40.1 194.8 23.6 90.6 44.9 33.0 20.6	9.9 12.2 62.3 7.2 28.5 14.1 10.4 6.5	0.3 0.3 1.1 0.2 0.6 0.3 0.2 0.2	1.3 1.1 3.6 0.9 1.7 1.2 0.8 0.6	48.4 62.4 304.9 35.4 141.9 70.8 52.7 33.1	99.5 124.1 613.0 71.7 281.3 142.5 103.9 65.5	4.9 5.9 28.6 3.7 13.6 6.7 5.0 3.1	1.2 1.3 2.2 1.2 2.0 1.4 1.6 1.4	2.7 3.0 13.5 1.9 6.5 3.5 2.5 1.7	0.2 0.1 0.5 0.1 0.2 0.2 0.1 0.1	0.5 0.3 0.9 0.3 0.5 0.4 0.3 0.2	0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0	0.4 0.3 0.5 0.3 0.3 0.3 0.2 0.1	0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0	6.3 5.0 14.1 4.2 6.8 5.5 3.8 2.4
NEORB011	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	634 592 784 507 181 529 791 88 141 105 102 114 116 141 156 179 159	20.9% 21.4% 21.2% 21.3% 21.4% 21.5% 21.2% 21.2% 22.6% 22.8% 22.2% 22.7% 21.6% 20.9% 21.3% 21.9% 21.9%	99.1 94.9 124.8 81.3 28.8 85.3 126.0 13.4 22.5 16.4 15.9 18.3 17.6 21.2 24.4 28.9 25.3	30.7 29.7 39.1 25.3 9.0 26.0 39.1 3.9 6.3 4.4 4.4 4.4 4.9 4.8 6.5 7.4 8.6 7.6	$\begin{array}{c} 0.5\\ 0.5\\ 0.6\\ 0.4\\ 0.2\\ 0.5\\ 0.7\\ 0.2\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.3\\ 0.2\\ 0.3\\ 0.4\\ 0.4\\ 0.3\\ 0.2\\ 0.3\\ 0.4\\ \end{array}$	1.8 1.5 1.9 1.2 0.8 1.7 2.2 1.4 2.6 2.0 2.3 2.2 1.4 1.1 1.4 1.5	158.3 145.4 192.3 123.1 42.6 126.7 194.7 17.1 26.2 17.1 18.1 19.9 20.2 31.8 36.0 40.3 34.8	312.0 293.6 388.2 251.8 87.8 261.6 390.6 36.4 58.5 38.9 39.7 44.2 43.4 62.9 72.7 82.5 72.7	13.8 12.5 17.5 10.9 4.2 12.5 18.7 2.5 4.2 3.5 3.0 3.6 3.2 3.4 3.9 4.8 4.4	2.0 1.7 2.3 1.7 1.6 0.5 0.5 0.5 0.5 0.5 0.7 0.6 0.7 1.2	6.6 5.5 7.7 4.9 2.3 5.7 8.6 1.9 3.4 2.7 2.4 2.9 2.8 2.4 2.3 3.0 3.0	$\begin{array}{c} 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.5\\ 0.6\\ 0.4\\ 0.6\\ 0.5\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3$	$\begin{array}{c} 0.7\\ 0.4\\ 0.6\\ 0.4\\ 0.3\\ 0.4\\ 0.6\\ 0.9\\ 1.3\\ 1.5\\ 1.2\\ 1.4\\ 1.8\\ 0.7\\ 0.5\\ 0.6\\ 0.5\\ \end{array}$	0.1 0.1 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.1	0.4 0.3 0.4 0.2 0.3 0.4 0.9 1.4 1.5 1.2 1.3 1.7 0.7 0.4 0.5 0.4	0.1 0.0 0.1 0.0 0.1 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.1 0.1 0.1	7.2 5.4 7.7 5.7 3.8 5.9 8.0 8.5 13.0 13.8 12.5 13.5 16.4 8.1 5.9 7.2 6.6
NEORB012	0 1 2 3	1 2 3 4	340 273 265 256	22.5% 21.6% 19.2% 21.3%	54.4 42.2 36.7 39.7	16.1 12.7 11.3 12.3	1.0 0.7 0.4 0.4	5.0 3.4 2.3 2.1	77.2 56.3 53.4 58.5	137.6 124.1 137.6 119.4	9.8 7.0 5.9 6.5	2.1 1.7 1.6 1.8	7.2 5.1 3.6 3.8	0.9 0.5 0.4 0.3	2.3 1.5 0.9 0.9	0.3 0.2 0.1 0.1	1.8 1.2 0.7 0.8	0.3 0.2 0.1 0.1	24.3 16.1 10.1 9.3

(m) (m) (pm) ((ppm) (ppm) 0.3 25.0 0.4 32.1 0.2 25.4 0.1 14.6 0.1 13.0 0.2 20.4 0.1 11.0 0.2 20.1 0.2 20.1 0.2 14.5 0.4 32.3 0.2 17.9 0.2 17.3 0.4 36.5
5 6 849 22.5% 138.8 43.3 1.6 7.0 195.5 386.9 22.0 3.3 12.6 1.2 3.1 0.4 2.7 7 8 309 23.3% 62.4 19.2 0.8 3.6 82.6 163.4 10.7 2.3 6.6 0.5 1.2 0.1 0.8 16 17 8 225% 52.7 16.2 0.6 7.5 145.0 8.9 22.73 14.0 3.2 8.4 0.8 1.1 0.3 1.6 16 17 18 596 22.2% 98.1 2.9 7.0 3.6 137.2 278.8 15.4 2.6 7.8 0.6 1.5 0.2 1.4 18 19 406 22.9% 98.1 1.0 4.2 2.9 1.0 4.8 1.1 1.8 1.4 2.6 6.8 0.7 1.9 0.3 1.5 22.1 2.6	$\begin{array}{cccc} 0.4 & 32.1 \\ 0.2 & 25.4 \\ 0.1 & 14.6 \\ 0.1 & 13.0 \\ 0.2 & 20.4 \\ 0.1 & 11.0 \\ 0.2 & 18.0 \\ 0.2 & 20.1 \\ 0.2 & 14.5 \\ 0.4 & 32.3 \\ 0.2 & 17.9 \\ 0.2 & 18.0 \\ 0.2 & 17.9 \\ 0.2 & 18.0 \\ 0.2 & 17.3 \\ 0.4 & 36.7 \\ \end{array}$
6 7 66 22.9% 112.3 33.0 1.4 61 144.3 305.9 18.3 2.9 11.0 0.9 2.3 0.3 1.7 8 12 267 23.3% 624 19.2 0.6 2.7 58.5 117.2 7.6 1.9 4.8 0.4 1.1 0.2 0.9 12 16 498 22.6% 82.0 24.9 1.0 6.6 0.7 1.9 4.8 0.4 1.1 0.1 0.8 17 18 596 22.5% 52.7 16.2 0.6 2.6 73.5 145.0 8.9 2.2 5.0 0.4 1.1 0.1 0.8 1.8 19 20 22.5% 52.7 16.2 0.6 2.6 73.5 1.3 2.6 2.86 1.9 4.2 1.9 0.3 1.8 19 20.2 23.5 23.6 5.7 1.6 7.7 1.6	$\begin{array}{cccc} 0.2 & 25.4 \\ 0.1 & 14.6 \\ 0.1 & 13.0 \\ 0.2 & 20.4 \\ 0.1 & 11.0 \\ 0.2 & 18.0 \\ 0.2 & 20.1 \\ 0.2 & 14.5 \\ 0.4 & 32.3 \\ 0.2 & 17.9 \\ 0.2 & 18.0 \\ 0.2 & 17.9 \\ 0.2 & 18.0 \\ 0.2 & 17.3 \\ 0.4 & 36.7 \\ \end{array}$
8 12 267 230% 44.6 13.5 0.6 2.7 58.5 117.2 7.6 1.9 4.8 0.4 1.1 0.2 0.9 16 17 320 22.6% 52.7 16.2 0.6 2.6 73.5 14.0 3.2 8.4 0.8 1.1 0.1 0.3 1.6 17 18 19 0.66 21.9% 79.5 24.2 0.8 3.6 175.2 22.8 15.4 2.6 7.8 0.6 1.3 0.2 1.2 21 620 24.6% 11.0 3.7 7.8 12.3 2.6 6.8 0.7 1.9 0.3 1.6 22 23 63.6 22.6% 5.8.2 17.3 1.0 4.2 69.5 168.4 11.0 1.8 7.4 0.7 2.0 0.3 1.5 22 23 433 24.8% 66.7 1.8 7.7 7.6 5.7	0.1 13.0 0.2 20.4 0.1 11.0 0.2 18.0 0.2 20.1 0.2 14.5 0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.2 17.3 0.4 36.7
12 16 498 22.6% 82.0 24.9 1.0 4.8 1067 22.73 14.0 3.2 8.4 0.8 1.9 0.3 1.6 16 17 35 566 22.5% 98.1 29.7 0.9 3.6 137.2 278.8 15.4 2.6 6.8 0.7 1.9 0.2 1.4 18 19 20 235 24.3% 41.2 11.9 0.7 3.3 50.7 94.6 7.5 2.3 5.4 0.5 1.3 0.2 1.2 20 21 620 24.6% 58.2 17.3 1.0 4.2 66.5 168.4 110. 1.8 7.4 0.7 2.0 0.3 1.5 21 22 366 22.6% 68.2 17.3 1.0 4.2 69.5 168.4 110. 1.8 7.4 0.7 1.6 0.2 1.4 22 324 392 24.5%	0.2 20.4 0.1 11.0 0.2 18.0 0.2 20.1 0.2 14.5 0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
16 17 18 200 22.5% 52.7 16.2 0.6 2.6 73.5 145.0 8.9 2.2 5.0 0.4 1.1 0.1 0.8 17 18 596 22.2% 98.1 29.7 0.9 3.6 113.5 27.8 15.4 2.6 6.8 0.7 1.9 0.3 1.8 19 20 255 24.3% 10.8 32.4 1.7 7.8 132.5 28.0 19.8 4.2 1.2 3.0 0.4 2.6 21 22 366 22.6% 56.2 17.3 1.0 4.8 76.5 21.87 12.3 2.0 0.3 1.5 22 23 433 21.3% 66.7 19.3 1.1 4.8 76.5 21.87 11.0 1.8 7.7 10.3 1.5 2.2 7.6 0.7 1.6 0.2 1.4 24 25 765 22.5% 10.0	0.1 11.0 0.2 18.0 0.2 20.1 0.2 14.5 0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
17 18 596 22.2% 98.1 29.7 0.9 3.6 137.2 278.8 15.4 2.6 7.8 0.6 1.5 0.2 1.4 19 20 235 24.3% 41.2 11.9 0.7 3.3 50.7 94.6 7.5 2.3 5.4 0.5 1.3 0.2 1.2 20 21 620 24.6% 110.8 3.2.4 1.7 7.8 132.5 258.0 19.8 4.2 12.9 1.2 3.0 0.4 2.6 21 22 36 63.7 18.8 1.0 4.5 76.5 218.7 1.2 3.0 0.7 1.6 0.2 1.4 24 25 755 22.5% 123.6 36.7 1.8 7.7 164.2 337.8 20.9 4.2 13.3 1.3 3.1 0.4 2.6 25 26 613 24.3% 13.1 24 11.2 150.1	0.2 18.0 0.2 20.1 0.2 14.5 0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
19 20 225 24.3% 41.2 11.9 0.7 3.3 50.7 94.6 7.5 2.3 5.4 0.5 1.3 0.2 1.2 20 21 22 356 22.6% 10.0 32.4 1.7 7.8 132.5 258.0 19.8 4.2 12.9 1.2 3.0 0.4 2.6 21 22 356 22.6% 58.2 17.3 1.0 4.2 68.5 163.4 11.0 1.8 7.4 0.7 2.0 0.3 1.5 23 24 362 24.0% 62.9 18.6 1.0 4.5 72.5 199.7 11.6 2.2 7.6 0.7 1.6 0.2 1.4 24 25 755 22.5% 123.6 36.7 1.8 7.7 164.2 337.8 20.9 4.2 13.3 1.5 3.9 0.5 3.5 26 613 24.7% 134.1 39.	0.2 14.5 0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
20 21 620 24 6% 110.8 32.4 1.7 7.8 132.5 258.0 19.8 4.2 12.9 1.2 3.0 0.4 2.6 21 22 366 226% 58.2 17.3 1.0 4.2 66.5 166.4 11.0 1.8 74.0 0.7 1.7 0.3 1.5 22 23 433 21.3% 66.7 19.3 1.1 4.2 66.5 168.4 11.0 1.8 7.7 1.6 2.2 7.6 0.7 1.6 0.2 1.4 24 25 755 24.7% 106.6 31.4 1.8 8.8 120.8 255.5 7.0 17.8 1.8 0.6 3.2 26 27 755 24.7% 134.1 3.1 1.2 150.1 309.6 2.5 7.0 17.8 1.8 2.7 0.3 2.0 28 32 182 23.5% 30.6 </th <th>0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7</th>	0.4 32.3 0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
21 22 356 22.6% 58.2 17.3 1.0 4.2 66.5 163.4 11.0 1.8 7.4 0.7 2.0 0.3 1.5 23 24 362 24.0% 62.9 18.6 1.0 4.5 72.5 159.7 11.6 2.2 8.3 0.7 1.7 0.3 1.6 24 25 755 22.5% 123.6 36.7 1.8 7.7 164.2 337.8 20.9 4.2 13.3 1.3 3.1 0.4 2.6 25 26 613 24.3% 106.6 31.4 1.8 8.8 120.8 255.5 7.0 17.8 1.8 4.5 0.6 3.7 28 290 23.2% 48.1 13.7 0.9 4.6 59.2 116.6 9.0 2.2 6.5 0.8 2.7 0.3 2.0 28 32 132 23.5% 30.6 8.4 0.6 3.	0.2 17.9 0.2 18.0 0.2 17.3 0.4 36.7
PEORB013 0 4 277 22.0% 46.8 1.1 4.8 76.5 218.7 12.3 2.2 8.3 0.7 1.7 0.3 1.6 23 24 362 240% 66.7 19.3 1.1 4.8 76.5 159.7 11.6 2.2 7.6 0.7 1.6 0.2 1.4 24 25 755 22.5% 123.6 36.7 1.8 7.7 164.2 337.8 20.9 4.2 7.3 3.1 0.4 2.6 25 26 613 24.3% 106.6 31.4 1.8 8.8 120.8 255.5 19.4 4.7 13.3 1.5 3.9 0.5 3.5 27 28 290 23.2% 48.1 13.7 0.9 4.6 59.2 116.6 9.0 2.2 6.5 0.8 2.7 0.3 2.0 28 32 182 23.5% 30.6 8.4 0.	0.218.00.217.30.436.7
23 24 362 24.0% 62.9 18.6 1.0 4.5 72.5 159.7 11.6 2.2 7.6 0.7 1.6 0.2 1.4 24 25 755 22.5% 123.6 36.7 1.8 7.7 164.2 337.8 20.9 4.2 13.3 1.3 3.1 0.4 2.6 26 27 755 24.7% 134.1 39.1 2.4 11.2 150.1 309.6 25.5 7.0 17.8 1.8 4.5 0.6 3.7 27 28 32 182 23.5% 30.6 8.4 0.6 3.2 33.8 73.9 5.6 1.6 4.3 0.7 1.6 0.2 1.3 NEORB013 0 4 277 22.0% 44.8 14.0 0.4 1.7 63.7 130.2 6.9 1.1 3.7 0.3 0.9 0.1 0.7 8 12 502 21.8%<	0.2 17.3 0.4 36.7
25 26 613 24.3% 106.6 31.4 1.8 8.8 120.8 255.5 19.4 4.7 13.3 1.5 3.9 0.5 3.5 26 27 755 24.7% 134.1 39.1 2.4 11.2 150.1 309.6 25.5 7.0 17.8 1.8 4.5 0.6 3.7 27 28 32 182 23.5% 30.6 8.4 0.6 3.2 33.8 73.9 5.6 1.6 4.3 0.7 1.6 0.2 1.3 NEORB013 0 4 277 22.0% 44.8 14.0 0.4 1.7 63.7 130.2 6.9 1.1 3.7 0.3 0.9 0.1 0.7 4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.6 0.1 0.5 12 16 457	
26 27 755 24.7% 134.1 39.1 2.4 11.2 150.1 309.6 25.5 7.0 17.8 1.8 4.5 0.6 3.7 27 28 290 23.2% 48.1 13.7 0.9 4.6 59.2 116.6 9.0 2.2 6.5 0.8 2.7 0.3 2.0 28 32 182 23.5% 30.6 8.4 0.6 3.2 33.8 73.9 5.6 1.6 4.3 0.7 1.6 0.2 1.3 NEORB013 0 4 277 22.0% 44.8 14.0 0.4 1.7 63.7 130.2 6.9 1.1 3.7 0.3 0.9 0.1 0.7 4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.0 0.2 4 8 378 21.6% 73.5	0.5 40.5
27 28 290 23.2% 48.1 13.7 0.9 4.6 59.2 116.6 9.0 2.2 6.5 0.8 2.7 0.3 2.0 NEORB013 0 4 277 22.0% 44.8 14.0 0.4 1.7 63.7 130.2 6.9 1.1 3.7 0.3 0.9 0.1 0.7 4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.0 0.2 12 16 457 21.6% 81.1 26.1 0.5 1.7 116.8 249.4 11.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 700 22.1% 114.5 <th>0.5 47.4</th>	0.5 47.4
28 32 182 23.5% 30.6 8.4 0.6 3.2 33.8 73.9 5.6 1.6 4.3 0.7 1.6 0.2 1.3 NEORB013 0 4 277 22.0% 44.8 14.0 0.4 1.7 63.7 130.2 6.9 1.1 3.7 0.3 0.9 0.1 0.7 4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.6 0.1 0.5 12 16 457 21.6% 73.5 23.4 0.4 1.3 109.1 226.0 10.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 778 21.9%	0.3 47.4
4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.0 0.2 8 12 502 21.8% 81.1 26.1 0.5 1.7 116.8 249.4 11.7 1.1 5.2 0.3 0.6 0.1 0.5 12 16 457 21.6% 73.5 23.4 0.4 1.3 109.1 226.0 10.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 700 22.1% 114.5 36.5 0.8 2.9 158.3 346.4 16.4 1.4 7.5 0.4 1.1 0.1 0.8 24 28 778 21.9% 126.0 40.7<	0.2 16.0
4 8 378 21.5% 60.7 19.1 0.4 1.2 91.7 185.5 9.1 1.0 3.8 0.2 0.3 0.0 0.2 8 12 502 21.8% 81.1 26.1 0.5 1.7 116.8 249.4 11.7 1.1 5.2 0.3 0.6 0.1 0.5 12 16 457 21.6% 73.5 23.4 0.4 1.3 109.1 226.0 10.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 700 22.1% 114.5 36.5 0.8 2.9 158.3 346.4 16.4 1.4 7.5 0.4 1.1 0.1 0.8 24 28 778 21.9% 126.0 40.7<	
8 12 502 21.8% 81.1 26.1 0.5 1.7 116.8 249.4 11.7 1.1 5.2 0.3 0.6 0.1 0.5 12 16 457 21.6% 73.5 23.4 0.4 1.3 109.1 226.0 10.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.5 0.2 0.4 0.1 0.5 20 24 700 22.1% 114.5 36.5 0.8 2.9 158.3 346.4 16.4 1.4 7.5 0.4 1.1 0.1 0.8 24 28 778 21.9% 126.0 40.7 0.8 3.0 178.3 386.9 16.9 1.6 7.7 0.5 1.1 0.1 0.8 28 32 639 21.9% 102.5	0.1 8.4
12 16 457 21.6% 73.5 23.4 0.4 1.3 109.1 226.0 10.7 1.1 4.5 0.2 0.4 0.1 0.3 16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 700 22.1% 114.5 36.5 0.8 2.9 158.3 346.4 16.4 1.4 7.5 0.4 1.1 0.1 0.8 24 28 778 21.9% 102.5 33.6 0.7 2.9 144.3 315.7 14.4 1.4 6.7 0.5 1.1 0.1 0.8 28 32 639 21.9% 102.5 33.6 0.7 2.9 144.3 315.7 14.4 1.4 6.7 0.5 1.2 0.1 0.7 36 40 500 2.0% 74.3	0.0 5.0 0.1 7.5
16 20 463 21.6% 73.8 23.7 0.5 1.9 105.3 230.9 10.4 1.1 4.9 0.3 0.7 0.1 0.5 20 24 700 22.1% 114.5 36.5 0.8 2.9 158.3 346.4 16.4 1.4 7.5 0.4 1.1 0.1 0.8 24 28 778 21.9% 126.0 40.7 0.8 30.0 178.3 386.9 16.4 1.4 1.4 6.7 0.5 1.1 0.1 0.8 28 32 639 21.9% 102.5 33.6 0.7 2.9 144.3 315.7 14.4 1.4 6.7 0.5 1.2 0.1 0.9 32 36 348 22.0% 56.3 1.7.6 0.5 2.0 77.5 167.1 9.0 1.2 4.6 0.3 0.8 0.1 0.7 40 44 874 22.0%	0.0 5.9
24 28 778 21.9% 126.0 40.7 0.8 3.0 178.3 386.9 16.9 1.6 7.7 0.5 1.1 0.1 0.8 28 32 639 21.9% 102.5 33.6 0.7 2.9 144.3 315.7 14.4 1.4 6.7 0.5 1.2 0.1 0.9 32 36 348 22.0% 56.3 17.6 0.5 2.0 77.5 167.1 9.0 1.2 4.6 0.3 0.8 0.1 0.7 36 40 500 20.4% 74.3 24.4 0.6 2.6 120.8 246.9 10.7 1.2 5.5 0.4 0.9 0.1 0.7 40 44 874 22.0% 143.5 44.3 1.0 3.9 204.1 426.3 19.0 2.1 9.1 0.6 1.5 0.2 1.2 44 48 579 21.6% 93.4 2	0.1 8.8
28 32 639 21.9% 102.5 33.6 0.7 2.9 144.3 315.7 14.4 1.4 6.7 0.5 1.2 0.1 0.9 32 36 348 22.0% 56.3 17.6 0.5 2.0 77.5 167.1 9.0 1.2 4.6 0.3 0.8 0.1 0.7 36 40 500 20.4% 74.3 24.4 0.6 2.6 120.8 246.9 10.7 1.2 5.5 0.4 0.9 0.1 0.7 40 44 874 22.0% 143.5 44.3 1.0 3.9 204.1 426.3 19.0 2.1 9.1 0.6 1.5 0.2 1.2 44 48 579 21.6% 93.4 28.8 0.6 2.3 132.5 287.4 14.1 1.6 6.5 0.3 0.8 0.1 0.8 48 52 1,143 21.0% 177.3 <td< th=""><th>0.1 12.5</th></td<>	0.1 12.5
32 36 348 22.0% 56.3 17.6 0.5 2.0 77.5 167.1 9.0 1.2 4.6 0.3 0.8 0.1 0.7 36 40 500 20.4% 74.3 24.4 0.6 2.6 120.8 246.9 10.7 1.2 5.5 0.4 0.9 0.1 0.7 40 44 874 22.0% 143.5 44.3 1.0 3.9 204.1 426.3 19.0 2.1 9.1 0.6 1.5 0.2 1.2 44 48 579 21.6% 93.4 28.8 0.6 2.3 132.5 287.4 14.1 1.6 6.5 0.3 0.8 0.1 0.8 48 52 1,143 21.0% 177.3 57.6 1.2 4.4 278.0 560.2 24.1 3.5 11.4 0.7 1.8 0.2 1.3 52 56 524 21.1% 82.3 <td< th=""><th>0.1 13.0</th></td<>	0.1 13.0
36 40 500 20.4% 74.3 24.4 0.6 2.6 120.8 24.9 10.7 1.2 5.5 0.4 0.9 0.1 0.7 40 44 874 22.0% 143.5 44.3 1.0 3.9 204.1 426.3 19.0 2.1 9.1 0.6 1.5 0.2 1.2 44 48 579 21.6% 93.4 28.8 0.6 2.3 132.5 287.4 14.1 1.6 6.5 0.3 0.8 0.1 0.8 48 52 1,143 21.0% 177.3 57.6 1.2 4.4 278.0 560.2 24.1 3.5 11.4 0.7 1.8 0.2 1.3 52 56 524 21.1% 82.3 26.0 0.6 1.9 129.0 253.1 12.3 1.9 5.7 0.3 0.7 0.1 0.6	0.1 13.7 0.1 9.9
44 48 579 21.6% 93.4 28.8 0.6 2.3 132.5 287.4 14.1 1.6 6.5 0.3 0.8 0.1 0.8 48 52 1,143 21.0% 177.3 57.6 1.2 4.4 278.0 560.2 24.1 3.5 11.4 0.7 1.8 0.2 1.3 52 56 524 21.1% 82.3 26.0 0.6 1.9 129.0 253.1 12.3 1.9 5.7 0.3 0.7 0.1 0.6	0.1 10.4
48 52 1,143 21.0% 177.3 57.6 1.2 4.4 278.0 560.2 24.1 3.5 11.4 0.7 1.8 0.2 1.3 52 56 524 21.1% 82.3 26.0 0.6 1.9 129.0 253.1 12.3 1.9 5.7 0.3 0.7 0.1 0.6	0.2 17.3
52 56 524 21.1% 82.3 26.0 0.6 1.9 129.0 253.1 12.3 1.9 5.7 0.3 0.7 0.1 0.6	0.1 9.2
	0.2 21.2 0.1 9.2
56 60 594 21.2% 93.9 29.5 0.6 1.9 148.9 287.4 13.5 1.9 6.1 0.3 0.7 0.1 0.5	0.1 8.9
60 61 845 21.3% 133.0 41.2 1.2 5.0 202.9 398.0 20.2 3.6 9.4 0.8 2.1 0.3 1.9	0.3 25.4
61 62 604 19,1% 80.5 24.9 1.6 8.5 137.2 249.4 14.4 2.3 10.5 1.7 4.5 0.6 3.7	0.6 63.5
62 63 200 21.9% 31.5 9.2 0.6 2.5 39.9 84.9 7.7 1.0 4.4 0.5 1.2 0.2 1.0	0.2 15.5
NEORB014 0 4 351 21.3% 55.1 17.4 0.4 2.0 86.0 167.1 8.3 1.0 3.8 0.3 0.8 0.1 0.6	0.1 8.4
4 5 208 20.6% 31.8 10.1 0.2 0.6 52.0 102.7 4.5 0.7 1.7 0.1 0.2 0.0 0.1	0.0 2.6
5 6 537 21.2% 84.4 26.9 0.5 1.7 131.4 265.3 13.0 1.0 5.0 0.2 0.5 0.1 0.3	0.0 6.9
6 7 526 21.3% 83.0 26.8 0.5 1.6 126.7 262.9 12.1 1.0 4.4 0.2 0.4 0.0 0.9 7 8 839 21.5% 134.1 43.1 0.8 2.5 202.9 416.4 19.6 1.2 7.6 0.3 0.7 0.1 0.4	0.0 5.3 0.0 9.3
6 0 0.09 21.3% 104-1 4.1 0.0 2.3 202.9 410-4 13.0 1.2 7.0 0.3 0.1 0.1 0.4 8 9 559 21.4% 89.1 27.7 0.6 2.1 132.5 277.6 13.8 1.0 5.6 0.3 0.6 0.1 0.4	0.0 7.4
9 10 669 21.5% 106.8 34.0 0.7 2.3 160.7 331.7 15.4 1.2 6.2 0.3 0.6 0.1 0.4	0.1 9.0
10 11 1,067 22.2% 178.5 54.4 1.0 3.2 255.7 524.5 25.4 2.1 9.9 0.4 0.8 0.1 0.6	0.1 10.9
11 12 1.502 21.8% 244.9 76.1 1.5 4.6 363.6 738.3 36.9 1.7 14.3 0.6 1.2 0.1 0.9 11 12 1.502 21.8% 244.9 76.1 1.5 4.6 363.6 738.3 36.9 1.7 14.3 0.6 1.2 0.1 0.9 11 12 1502 21.8% 244.9 76.1 1.5 4.6 363.6 738.3 36.9 1.7 14.3 0.6 1.2 0.1 0.9 11 12 15.0 21.4 10.6 14.0 14.9 0.6 1.2 0.1 0.9	0.1 16.9
12 16 490 21.2% 76.6 24.4 0.6 2.3 112.6 244.5 11.8 1.3 5.0 0.3 0.8 0.1 0.6 16 17 764 20.5% 115.4 36.4 1.0 3.8 183.0 373.4 17.9 3.1 8.3 0.6 1.5 0.2 1.1	0.1 9.4 0.2 18.3
17 18 2.189 21.3% 345.3 111.6 2.0 7.0 538.3 1.071.2 50.4 4.7 19.9 1.0 2.4 0.3 1.8	0.2 10.3
18 19 1,210 21.4% 192.5 60.9 1.3 4.6 289.7 593.3 29.1 2.7 11.5 0.7 1.6 0.2 1.4	0.2 20.7
19 20 1,503 23.3% 261.3 80.6 1.9 6.6 336.6 722.3 42.7 4.1 16.1 0.9 2.2 0.3 1.7	0.2 25.4
20 21 1,062 25.1% 198.3 55.1 2.5 10.8 204.1 460.7 40.1 4.9 20.1 1.7 4.5 0.6 3.6 21 22 2,827 27.5% 587.9 163.1 5.4 20.5 472.6 1,314.4 107.7 8.2 45.0 3.1 7.5 1.0 6.1	0.5 55.1 0.9 83.6
21 22 2,827 27.5% 587.9 163.1 5.4 20.5 472.6 1,314.4 107.7 8.2 45.0 3.1 7.5 1.0 6.1 22 23 454 21.4% 72.0 22.5 0.6 2.4 103.3 219.9 11.4 1.7 5.1 0.4 1.0 0.1 0.8	0.9 83.6
22 24 1,157 22.2% 190.1 59.9 1.4 5.1 262.7 565.1 28.6 4.1 11.3 0.8 2.0 0.3 1.6	
24 25 932 21.0% 144.6 46.5 1.0 3.7 228.7 458.2 19.7 2.7 8.0 0.5 1.4 0.2 1.0	0.2 23.2

Hole ID	From (m)	To (m)	TREO (ppm)	MREO: TREO	Nd₂O₃ (ppm)	Pr₀O₁₁ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	La₂O₃ (ppm)	CeO₂ (ppm)	Sm₂O₃ (ppm)	Eu₂O₃ (ppm)	Gd₂O₃ (ppm)	Ho₂O₃ (ppm)	Er₂O₃ (ppm)	Tm₂O₃ (ppm)	Yb₂O₃ (ppm)	Lu₂O₃ (ppm)	Y₂O₃ (ppm)
				(%)															
	25	26	1,245	20.5%	189.0	60.8	1.1	4.0	320.2	609.3	26.7	2.9	10.8	0.6	1.4	0.2	1.0	0.1	17.0
	26	27	797	21.4%	128.3	39.7	0.6	1.7	197.0	396.8	18.0	2.2	6.2	0.2	0.4	0.0	0.4	0.0	5.2
	27	28	1,116	21.5%	178.5	54.5	1.3	5.3	273.3	525.8	27.3	5.7	12.0	0.8	2.1	0.3	1.8	0.3	27.7
	28	29	1,439	21.4%	229.8	73.7	1.1	3.1	360.0	710.0	32.7	3.0	11.6	0.4	0.9	0.1	0.7	0.1	11.7
	29	30	929	21.8%	151.6	47.7	0.8	2.2	221.7	464.3	22.4	2.0	7.8	0.3	0.6	0.1	0.4	0.1	7.0
	30	31	1,944	21.6%	316.1	98.6	1.5	4.0	477.3	968.0	45.0	2.8	15.9	0.5	0.9	0.1	0.7	0.1	12.2
	31	32	635	21.1%	99.4	31.7	0.6	2.1	148.9	320.6	14.8	1.5	5.7	0.3	0.6	0.1	0.4	0.1	7.8
	32	36	913	21.7%	147.0	46.8	1.0	3.6	215.8	448.4	20.8	2.2	8.3	0.5	1.3	0.2	1.1	0.1	15.6
	36	37	825	21.8%	133.0	42.2	0.9	3.8	191.2	407.8	17.7	2.0	7.5	0.6	1.4	0.2	1.1	0.2	15.4
	37	38	942	21.5%	150.5	46.6	1.1	4.3	220.5	465.6	21.2	2.3	8.9	0.7	1.6	0.2	1.3	0.2	17.3
	38	39	924	21.9%	150.5	46.6	1.1	4.4	218.1	448.4	19.6	2.4	8.6	0.7	1.8	0.2	1.3	0.2	20.3
	39	40	765	21.5%	121.3	37.2	1.0	4.6	171.2	374.7	18.0	1.9	9.1	0.7	2.0	0.2	1.4	0.2	21.5
	40	41	818	21.1%	127.1	39.6	1.1	4.7	184.1	405.4	18.9	1.9	9.8	0.7	1.9	0.3	1.5	0.2	20.6
	41	42	842	21.5%	134.1	42.0	0.9	3.9	188.8	421.3	19.5	1.9	9.5	0.6	1.4	0.2	1.0	0.2	16.5
	42	43	434	20.6%	66.0	21.1	0.5	1.9	101.6	216.2	9.8	1.5	4.7	0.3	0.7	0.1	0.6	0.1	9.1
	43	44	625	21.3%	99.1	30.4	0.7	3.0	137.2	314.5	14.8	1.8	7.1	0.4	1.0	0.1	0.9	0.1	13.2
	44	48	643	21.8%	104.4	32.3	0.7	3.0	137.2	325.5	14.8	2.3	7.0	0.4	1.2	0.2	1.0	0.1	12.8
	48	52	786	21.8%	127.1	39.3	1.0	3.9	168.9	394.3	19.6	3.3	9.1	0.6	1.4	0.2	1.0	0.1	16.3
	52	53	1,525	20.3%	223.9	73.1	2.1	10.1	360.0	739.5	32.8	4.6	17.3	1.7	4.9	0.7	4.0	0.6	49.8
	53	54	551	21.6%	87.5	26.9	0.9	3.7	120.8	265.3	14.3	3.2	7.8	0.6	1.5	0.2	1.0	0.2	17.3
	54	55	404	21.3%	63.8	19.9	0.4	1.8	92.4	199.0	9.2	2.1	4.3	0.3	0.9	0.1	0.6	0.1	9.0
	55	56	2,122	21.3%	335.9	106.4	2.2	8.3	492.6	1,054.0	49.9	5.5	22.7	1.3	3.2	0.4	2.7	0.4	36.6
	56	57	1,082	21.5%	173.8	53.9	1.0	3.8	248.6	539.3	24.8	2.8	11.0	0.6	1.5	0.2	1.2	0.2	19.3
	57	58	872	21.3%	138.8	42.6	0.9	3.5	197.0	438.5	19.7	2.9	8.9	0.5	1.3	0.2	1.2	0.2	16.1
	58	59	244	18.0%	31.8	10.0	0.4	1.7	66.4	113.9	5.6	1.2	3.4	0.3	0.7	0.1	0.5	0.1	8.1
	59	60	140	21.2%	21.6	6.6	0.2	1.2	32.1	64.0	4.1	1.1	2.5	0.2	0.5	0.1	0.4	0.1	5.1

Appendix B JORC Tables

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical and recent AC/RB/RC drill samples were collected at 1m intervals and composited to 4m lengths for analysis. The 4m composite or 1m sample (where submitted) were crushed and a sub-fraction obtained for pulverisation. Rock chip samples were taken as individual rocks representing an outcrop (or grab samples). Surface rock samples can be biased towards higher grade mineralisation. Historical drillcore sampling was completed throughout drillholes by compositing variable widths (predominantly 5m) with a representative 5cm half core sample, representing each respective drill meter. Drillholes were located using hand-held GPS. Sampling was carried out under Voltaic Strategic Resources Ltd protocols and QAQC procedures as per current industry practice. RC drilling was used to obtain 1m samples collected through a splitter into buckets and placed in bags as 1m samples, in rows of 20. Sample quality was supervised with any sample loss or moisture recorded. Composite samples were collected with a scoop to generate composite samples. Samples will be or have been dispatched to LabWest laboratories in Perth. All samples will be analysed using Microwave digest (MD), Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) to finish. 62 element analysis including REEs by ICP-MS/OES.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 AC/RC drilling was completed by PNC Exploration/ESSO/Cameco utilising AC/RC drill methods. Historical drilling by Cameco used Wallis Drilling to undertake diamond drilling using a UDR-1000 drill rig. The drilling was completed using HQ (63.5mm) & NQ (47.6mm) from surface for the collection of drill core samples. Current RB drilling was carried out utilising a slimline AC rig combining RC drill rod string with a blade from surface to basement. Prior Auger Vacuum (AV) drilling was carried out with an auger mounted tractor
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Cameco reported drill recoveries as being close to 100% for the historical drilling. Historical drill core sample bias has occurred given only 5cm of respective 1m core sample interval run was submitted through composite sampling. A review is being undertaken to assess the potential to re-submit entire mineralised intervals where drill core has been found & identified, & interval runs remain complete.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Current drilling is being logged to industry standard capturing recoveries, regolith logging, mineralisation, pXRF and CPS (radiation) monitoring Cameco logged drill holes for geology, mineralisation, structure, and alteration. The geological and geotechnical logging is consistent with industry standards.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 Current sampling includes comprehensive and industry standard QAQC inclusive of split and duplicate samples, and applicable and representative REE standards. Historical drillcore sampling was completed throughout drillholes by compositing variable widths (predominantly 5m) with a representative a 5cm half core sample, representing each respective drill

Criteria	JORC Code explanation	Commentary
Quality of assay	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures 	 meter. Sampling measured spectral parameters using the PIMA II spectrometer and also assayed as lithology-based composites. <u>pXRF Analysis</u> pXRF analysis of AV/RB/RC sample piles is deemed fit for purpose as a preliminary exploration technique. pXRF provides a spot reading on sample piles with variable grain sizes and states of homogenisation. High grade results were repeated at multiple locations to confirm repeatability. The competent person considers this acceptable within the context of reporting preliminary exploration results. Recent drill samples were analysed by Labwest Minerals Analysis Pty Ltd in Perth. The sample analysis
data and laboratory tests	 The fide, quark and appoint is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Indecting the admits were digest with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish. Historical Cameco drill core samples were analysed by Chemnorth using four assay methods, ICP-OES, ICP-MS, AAS and gravity to analyse 32-53 elements. pXRF screening of samples and soil points preliminary analysis is obtained with an Olympus Vanta portable XRF NOTE 1: pXRF (portable x-ray fluorescence) assay results are semi-quantitative only. NOTE 2: pXRF – Only 5 elements analysed with pXRF analyser: Ce, La, Nd, Pr, Y Scanning electron microscope (SEM) analysis was undertaken by RSC Consulting Limited at their West Perth office using a Hitachi SU-3900 instrument which is capable of delivering automated mineralogy using the Advanced Mineral Identification and Characterisation System (AMICS). The instrument has detectors for analysing energy dispersive spectrometry (UVD). RSC undertook an initial characterisation study of eleven (11) smear clay, three (3) epoxy resin embedded clay and two (2) basement rock samples of historical drillcore (GAD0004 hole) from the company's Paddys Well REE project to investigate the mineralogical distribution of REE within the mineralised clay and vein horizons. RSC used their optical microscope and SEM for this work. Microcharacterisation of the samples provide an understanding of REE distribution and the potential implications for eventual metallurgical performance.

Criteria	JORC Code explanation	Commentary	y					
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical QC is monitored by the laboratory using standards and repeat assays. Independent standards were submitted by the Company at a rate of 1:25 samples. Independent field duplicates were not conducted for and were not considered necessary for this ear stage of exploration. The procedures used for verification of historical Cameco sampling and assaying are not known. Rare earth element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as per industry standards: TREO = La₂O₃ + CeO₂ + Pr₆O₁₁+Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₄ + Tm₂O₃ + Yb₂O₃ + Lu₂O₃ + Tb₄O₇ Conversion factors used to convert from element to oxide: 						
			Element	Oxide Conversion Factor	Equivalent Oxide			
			Ce	1.2284	CeO ₂			
			Dy	1.1477	Dy ₂ O ₃			
			Er	1.1435	Er ₂ O ₃			
			Eu	1.1579	Eu ₂ O ₃			
			Gd	1.1526	Gd ₂ O ₃			
			Но	1.1455	Ho ₂ O ₃			
			La	1.1728	La ₂ O ₃			
			Lu	1.1371	Lu ₂ O ₃			
			Nd	1.1664	Nd ₂ O ₃			
			Pr	1.2082	Pr ₆ O ₁₁			
			Sc	1.5338	Sc ₂ O ₃			
			Sm	1.1596	Sm ₂ O ₃			
			Tb	1.1762	Tb ₄ O ₇			
			Tm	1.1421	Tm ₂ O ₃			
			Y	1.2699	Y ₂ O ₃			
		•	Yb	1.1387	Yb ₂ O ₃			
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	were notDownholRecent c	t reported. le surveys were co drilling is captured	mpleted using an Eastman downho via GPS on GDA Z50 coordinates		-		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	lateral exNeo drillRegional	xtents of uranium n spacing was unde I soil pXRF survey	nineralisation. rtaken on an initial 80x40m was undertaken on a wide space 2				
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling that has been completed to date has not been structurally reviewed or validated to confirm the orientation of interpreted mineralisation Rock chip samples were selected to target specific geology, alteration and mineralisation. The samples were collected to assist historical explorers develop their understanding of the geology and exploration potential of historical tenure. Drill orientations have targeted interpreted mineralised horizons and lithological boundaries, as 						

Criteria	JORC Code explanation	Commentary						
		perpendicular as possible.Oxide regolith drilling is vertical						
Sample security	The measures taken to ensure sample security.	 Sample security was not reported by Cameco. Samples were given individual samples numbers for tracking. Recent drilling and surface sample security and integrity is in place to industry standards 						
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. A review of the historical core and compiled data is being undertaken to confirm historical results and assist in interpretation and targeting of further exploration. 						

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration done by	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 The project area is located approximately 60km northeast of the Gascoyne Junction and 220km east of Carnarvon. The Paddys Well project comprises one granted Exploration Licence, E09/2414 (where all of the current reported activities too place) and four Exploration Licence Applications E 09/2663, E 09/2669, E 09/2774, E 09/2774, E 09/2773. The tenements lie within Native Title Determined Areas of the Yinggarda, Baiyungu and Thalanyji People and Gnulli People. All the tenements are in good standing with no known impediments. Numerous exploration campaigns have been completed in the general area since the early 1970's focusing
other parties		 Predominantly on uranium and diamonds, however work within tenement area E09/2414 has been limited and there is no documented exploration targeting rare earth elements or lithium. From 1974-1983 companies including Uranerz, Agip Nucleare, AFMECO, ESSO Minerals and Urangesellschaft explored the Gascoyne Region for uranium with little success. Most anomalies identified were limited to secondary uranium occurrences in basement metamorphic sequences (including some occurrences associated with pegmatites) and surficial groundwater calcrete sheets (WAMEX REPORT A \$7808). Subsequently from 1992 – 1996, PNC Exploration explored the southern Gascoyne area actively targeting basement-hosted uranium mineralisation within the Morrissey Metamorphics (WAMEX REPORT A 46584). The exploration focussed on determining the source of U anomalies and their association with EM conductors. This led PNC to undertake nearly 100-line km of a Questem airborne EM survey as a follow-up to five regional traverses across regional geological trends. Additional EM was flown, as well as detailed airborne radiometrics, which identified several anomalies (WAMEX REPORT A 49947). Elveven (11) shallow percussion holes (average depth of ~60m) intersected strongly chloritised and graphitic metasedimentary rocks within a broader marble-calc-silicate gneiss sequence. The RC drilling program returned numerous +100 ppm U intercepts, including: GA9514: 18-2254m (9m) at 633 ppm U, including 1 mat 1400 ppm U (22-23m). GA9514: 18-226-28m (9m) at 633 ppm U, including 1 mat 1400 ppm U (25.25m - 25.75m) and 0.25m at 1000 ppm U (26.05 - 26.75m). Test work determined that both secondary and primary (uraninite) mineralisation is present, and that the chemical signature of the chlorite alteration is similar to that at Jabiluka. A follow-up program of RC drilling in 1996 (17 holes/1217m) returned several well mineralised intercepts at the main anomaly: GAR9630: 41-4

Criteria	JORC Code explanation	Commentary
		and whole-rock characterisation. The presence of coincidently elevated U, V, Zn, and Sr values in sample 471 is consistent with a strongly weathered black shale (WAMEX REPORT A 84272).
Geology	Deposit type, geological setting and style of mineralisation.	 The project area has historically been considered prospective for unconformity vein style uranium, although it equally considered prospective for rare earth element (REE) mineralisation hosted in iron-rich carbonatite dykes or intrusions, or lithium-caesium-tantalum (LCT) pegmatites. The project area encompasses a portion of the Gascoyne Province of the Capricorn Orogen. This geological belt is positioned between the Archaean Yilgarn Craton to the south, and the Archaean Pilbara Craton to the north, and largely consists of a suite of Archaean to Proterozoic gneisses, granitic and metasedimentary rocks. REE discoveries in the Gascoyne area, such as Yangibana, are associated with ironstone (weathered ferrocarbonatite) host rocks whereby weathering has enriched the REEs in situ. Yangibana is approximately 100km NE from the Paddys Well/West Wel project area and contains widespread occurrence of ironstone dykes that are spatially associated with the ferrocarbonatite intrusions. The deposit overlays the Gifford Creek Ferrocarbonatite Complex, which is located in the Neoarchean–Palaeoproterozoic Gascoyne Province, and comprises sills, dykes, and veins of ferrocarbonatite intruding the Pimbyana Granite and Yangibana Granite of the Durlacher Supersuite and metasedimentary rocks of the Poorano Metamorphics. The ironstone dykes are commonly surrounded by narrow haloes of fenitic alteration, and locally associated with quartz veining. Fenite is a metasomatic alteration associated particularly with carbonatite intrusions
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill collar and survey data are provided, along with various respective metadata. Historic drill holes collar and interval data were previously reported by Cameco and are available in open file (WAMEX REPORT A 61566).
Data aggregation methods	 In report, the competent retision should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals that comprise more than one sample have been reported using length-weighted averages. A cut-off grade of 250ppm TREO (with a maximum 2m of internal waste) has been used for the reported drill intercepts.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The orientation of the mineralisation is interpreted and yet to be structurally validated. All reported intervals, therefore intercepts, are down hole lengths.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Historical map plan figures were registered utilising 2-D software and respective coordinate datums. Hole drill collar ground truthing is expected to fine-tune actual collar positions. Workspaces of current and historical exploration have been constructed utilising 2&3D GIS software.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 No inference to economic mineralisation has been stated. A cut-off of 250ppm TREO was used in reporting of exploration results, to aid dismissing interpreted unrealistic anomalous mineralised sub-zones.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All of the relevant historical exploration data has been included in this report. All historical exploration information is available via WAMEX.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping; rockchip sampling; acquisition of high-resolution geophysical radiometric and magnetic data to assist geological interpretation, target identification; as well as auger and percussion drilling of ranked drill targets.