

Voltaic Strategic Resources Limited

ABN 66 138 145 114 Suite 2, 38 Colin Street West Perth WA 6005 +61 8 6245 9821 info@voltaicresources.com voltaicresources.com ASX: VSR 17 July 2023

ASX Release

Ti Tree Project Update

Highlights

- ~50% of assays received for maiden reconnaissance shallow drill campaign at the Andrada prospect with remaining results expected in ~ 2 weeks.
- Drilling has confirmed Andrada pegmatites are conformable to the classic LCT 'Goldilocks' model with zonation & fractionation increasing outward from parental granite source.
- Insights from initial results show a progressive increase in lithium-caesium-tantalum (LCT) grades with depth & tantalum also increasing radially outward to the north / northeast.
- Encouraging pegmatite widths with LCT anomalism ⇒ indicates Andrada may represent outer halo of larger mineralised system at depth.
- All pegmatites confirmed as <u>albite-rich</u> from minerology commonly associated with spodumene LCT pegmatite systems.
- Regional exploration vectoring model significantly bolstered by learnings enabling highly targeted follow-up campaigns.

Next Steps

- Most prospective parts of Ti Tree yet to be tested with 400+ pegmatites mapped, and 18 regional prospect areas identified. Deeper drilling required to fully understand the potential.
- Airborne magnetic & radiometric surveys commenced across Gascoyne projects with Ti Tree to be flown in coming weeks.
- Regional pXRF soil sampling campaign underway over highly prospective 'Morpheus' & 'Akira' target areas within interpreted 'Goldilocks' zone ⇒ forthcoming drill targets this quarter.

Voltaic Strategic Resources Limited (ASX:VSR) has received the first batch of assays from the maiden drill program at the Andrada prospect, Ti Tree project where a combined 2.6km of strike was tested at shallow depths every ~300m across two prospective LCT trends. To date, 31 holes have been completed for 2,393m and 34 individual pegmatite intercepts encountered.

Regional wide-spaced pXRF soil sampling campaigns now underway to identify new drill targets at 'priority 1' Morpheus & Akira prospects which are interpreted to reside in the 'Goldilocks¹' zone, focusing on highly prospective meta-sedimentary schists with anomalous lithium and abundant tourmaline alteration.

¹ LCT pegmatites are generally emplaced ~0-10 km of fertile granites ("goldilocks" zone). At Ti Tree, our current modelling indicates that this could be 0.5 – 5 km. Reference: Cerny, P, 1989, 'Exploration strategy and methods for pegmatite deposits of tantalum', *In Lanthanides, Tantalum, and Niobium*, Springer-Verlag, New York, pp. 274-302.

Voltaic Chief Executive Officer Michael Walshe said drilling to date had provided a wealth of vectoring insights for subsequent exploration campaigns and work is now underway to fast-track the next phase of drilling.

"The tenor of mineralisation encountered is highly encouraging in the context of vectoring to prime parts within LCT pegmatite systems where fractionation and complexity of zonation result in highly variable compositions over short distances."

"We have observed several encouraging indicators including:

- a progressive enrichment in LCT grades at shallow depths and over substantial widths,
- tantalum increasing radially outward to the north / northeast towards Morpheus,
- a predominance of albite as the dominant feldspar within the pegmatites,
- zones of extreme fractionation and zonation with very coarse crystal sizes,
- occurrence of typical LCT accessory minerals including beryl, muscovite, and tourmaline.

"Drilling has confirmed that the pegmatites at Andrada are conformable to the classic LCT 'Goldilocks' model with fractionation increasing outward in a northeast direction towards the Morpheus and Akira prospect areas (*Fig. 1*). Field reconnaissance is ongoing at both prospects right now to identify our next generation of drill targets which we hope to test this quarter".

"Voltaic is just at the beginning of the exploration journey at Ti Tree with 400+ pegmatites yet to be tested and only a small fraction of the tenure explored" he said.

Figure 1. Interpreted regional 'Goldilocks' zonation model at Ti Tree South's extensive pegmatite trends.

Figure 2. Example of large crystal pegmatite accessory minerals from Andrada area (see Fig. 4 for Andrada location)

DRILL HOLE		INTERSECTION	PEAK SURFACE ROCKCHIP
ANDRC001		20m @ 397 ppm Li ₂ O from 28m	32 ppm Li₂O
	incl:	4m @ 555 ppm Li₂O from 36m	
ANDRC006		7m @ 305 ppm Li ₂ O from 14m	191 ppm Li ₂ O
	incl:	1m @ 428 ppm Li ₂ O from 14m	
ANDRC007		12m @ 305 ppm Li ₂ O from 4m	Historical mica
	incl:	1m @ 721 ppm Li ₂ O from 4m	working
ANDRC008		16m @ 239 ppm Li ₂ O from 4m	133 ppm Li ₂ O
		12m @ 217 ppm Li ₂ O from 36m	
ANDRC011		1m @ 329 ppm Li ₂ O from 37m	184 ppm Li ₂ O
		1m @ 394 ppm Li₂O from 50m (EOH)	
ANDRC015		1m @ 319 ppm Li ₂ O from 57m	112 ppm Li ₂ O
ANDRC020		7m @ 295 ppm Li ₂ O from 44m	112 ppm Li ₂ O
	with peak of:	1m @ 637 ppm Li ₂ O from 50m	
		5m @ 462 ppm Li ₂ O from 69m	
	with peak of:	1m @ 521 ppm Li ₂ O from 73m	
ANDRC021		8m @ 248 ppm Li ₂ O from 22m	112 ppm Li ₂ O
	with peak of:	1m @ 514 ppm Li₂O from 22m	
		10m @ 219 ppm Li_2O from 82m	
	with peak of:	1m @ 304 ppm Li₂O from 87m	
		1m @ 454 ppm Li₂O from 97m	

Table 1. Andrada drill table – significant vectoring intersections with peak surface rockchip nearby

The next steps at Ti Tree Lithium Project

To date, the number of pegmatites mapped across the Project exceeds 400 and eighteen (18) regional priority target areas have been identified (Fig. 4 & 5). The number of targets is likely to increase, and the prioritisation of targets will be enhanced as geophysical and photogrammetry surveys are completed over the coming weeks. Planning is underway for **systematic and extensive follow-up drill programs** across northern and southern tenements with Morpheus and Akira target trends next in sequence.

Figure 3. The path ahead at Ti Tree

Figure 4. Ti Tree (South) regional prospects (10)

Regional Context

Voltaic's Ti Tree project resides within an interpreted prospective corridor of lithium, caesium, tantalum (LCT)-bearing pegmatites (the "Volta" corridor), which contains the Yinnietharra lithium discovery, and is underlain by the Thirty-Three Supersuite (TTS) – a belt of granitic plutons (intrusions) that have previously been shown to be fertile for LCT mineralisation² (*Figure 2*). Fertile LCT pegmatites in the region have been observed to lie within ~0–5 km of source granite intrusions and appear controlled by faults within the host metasediments.

The Volta corridor is interpreted to extend at least 80 km in a NW-SE orientation, underlying both the Yinnietharra Lithium discovery and Voltaic's tenure at Ti Tree North (ELA 09/2522) and Ti Tree South (EL 09/2503, ELA 09/2470). Delta Lithium Limited (ASX:DLI) are actively drilling 90,000m into the Yinnietharra project and other regional targets.

Figure 5. Ti Tree project area with neighbouring tenements held by Delta Lithium also shown

² See ASX:AMD release dated 18 November 2018 'Malinda Lithium-Tantalum Project Exploration Update'

Upcoming news flow at Ti Tree

Release authorised by the Board of Voltaic Strategic Resources Ltd.

For more information, please contact:

MICHAEL WALSHE

Chief Executive Officer Phone: +61 8 6245 9821 michael.walshe@voltaicresources.com

GARETH QUINN

Media and Investor Relations Phone +61 417 711 108 gareth@republicpr.com.au

Competent Person Statement

The information in this announcement related to Exploration Results is based on and fairly represents information compiled by Mr Claudio Sheriff-Zegers. Mr Sheriff-Zegers is employed as an Exploration Manager for Voltaic Strategic Resources Ltd and is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

Forward-Looking Statements

This announcement may contain forward-looking statements involving several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update statements if these beliefs, opinions, and estimates should change or to reflect other future development. Furthermore, this announcement contains forward-looking statements which may be identified by words such as "prospective", "potential", "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company cannot and does not give assurances that the results, performance, or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1: Supplementary Information

Table 2. Andrada Drill Table

Hole ID	Prospect Name	Depth (m)	Pegmatite intercept (m)**	Open at Depth ?	Stacked Config.?	Intercept
ANDRC001		77	-	-	-	20m @ 397ppm Li₂O from 28m with peak 4m @ 555ppm Li₂O from 36m
ANDRC002	Andrada LCT8	79	25-27m; 34-37m; 67-79m	YES	YES	$8m @ 287ppm Li_2O from 48m,$ $5m @ 259ppm Li_2O from 64m,$ with peak 1m @ 359ppm Li_2O from 67m
ANDRC023	LC18	60	1-36m	-	-	Assays pending
ANDRC024		60	4-10m; 33m	-	-	Assays pending
ANDRC003		86	-	-	-	Assays pending
ANDRC004	Andrada LCT7	73	-	-	-	Assays pending
ANDRC005		57	-	-	-	Assays pending
ANDRC006		45	1-13m	-	-	7m @ 305ppm Li ₂ O from 14m with peak 1m @ 428ppm Li₂O from 14m
ANDRC017	Andrada	61	1-3m	-	-	Assays pending
ANDRC019	LCT6	60	-	-	-	Assays pending
ANDRC018		60	36m	-	-	Assays pending
ANDRC007	Andrada	53	3m	-	-	12m @ 305ppm Li₂O from 4m with peak 1m @ 721ppm Li₂O from 4m
ANDRC031	LCT5	89	21-89m	YES	-	Assays pending
ANDRC008		50	-	-	-	16m @ 239ppm Li ₂ O from 4m 12m @ 217ppm L _{i2} O from 36m
ANDRC009	Andrada LCT11	50	-	-	-	NSR
ANDRC010		50	-	-	-	1m @ 323ppm Li₂O from 41m 1m @ 239ppm Li₂O from 50m (EOH)
ANDRC011		50	1-34m	-	-	1m @ 329ppm Li2O from 37m 1m @ 394ppm Li2O from 50m (EOH)
ANDRC013		60	60m	YES	-	16m @ 210ppm Li ₂ O from 4m with peak 1m @ 379ppm Li₂O from 10m 4m @ 212ppm Li ₂ O from 28m
ANDRC014		58	-	-	-	Assays pending
ANDRC012		50	1-15m; 18-50m	YES	YES	2m @ 300ppm Li ₂ O from 16m 1m @ 210ppm Li ₂ O from 22m 1m @ 228ppm Li ₂ O from 29m
ANDRC015		58	1-58m	YES		1m @ 319ppm Li ₂ O from 57m
ANDRC021	Andrada LCT12	124	1-22m; 29-58m	-	YES	2m @ 286ppm Li ₂ O from 12m with peak 1m @ 360ppm Li₂O from 13m 8m @ 248ppm Li ₂ O from 22m with peak 1m @ 514ppm Li₂O from 22m 1m @ 212ppm Li ₂ O from 60m 3m @ 235ppm Li ₂ O from 75m 10m @ 219ppm Li ₂ O from 82m with peak 1m @ 304ppm Li ₂ O from 87m 1m @ 454ppm Li₂O from 97m
ANDRC020		142	51-68m; 74-123m; 135-140m	-	YES	7m @ 295ppm Li ₂ O from 44m with peak 1m @ 637ppm Li₂O from 50m 5m @ 462ppm Li ₂ O from 69m with peak 1m @ 521ppm Li₂O from 73m 2m @ 336ppm Li ₂ O from 95m with peak 1m @ 381ppm Li₂O from 95m 1m @ 206ppm Li ₂ O from 101m 1m @ 254ppm Li ₂ O from 105m 1m @ 245ppm Li ₂ O from 124m
ANDRC016		39	-	-	-	Assays pending
ANDRC022		75	-	-	-	Assays pending
ANDRC025	Andrada LCT10	125	35m; 67-70m; 96-101; 105-107m	-	YES	Assays pending
ANDRC026		125	23-27m; 31-36m; 74-77m; 107m; 116-121m	-	YES	Assays pending
ANDRC027		100	4-8m; 20-24m; 56m; 78m; 85-90m	-	YES	Assays pending
ANDRC028		127	44-46m; 56-62m; 68-88m; 96-127m	YES	YES	Assays pending
ANDRC029	Andrada	125	36-37m	-	-	Assays pending
ANDRC030	LCT13	125	29-30m; 39-40m; 49-53m; 70-71m; 92-100m	-	YES	Assays pending
ANDRC031		89	21-89m	YES	-	Assays pending

Cross Sections

Figure 6. Andrada β Trend: ANDRC012, 015, 020, 021 (LCT12) Cross Section

Figure 8. Andrada a Trend: ANDRC007 (LCT5) Cross Section

Figure 7. Andrada a Trend: ANDRC001 (LCT8) Cross Section

Figure 9. Andrada a Trend: ANDRC002 (LCT8) Cross Section

Figure 10. Drill location map plan at Andrada

Figure 11. Drilling map showing holes completed at Andrada prospect with identified pegmatite trends.

Table 3. Andrada α Drill Table

HOLE ID	Prospect Name	Easting	Northing	RL (m)	Mag Azimuth (°)	Dip (°)	Depth (m)	Drill Type*	Lithology / Comment	
									Ridge with surficial coarse-grained pegmatite; 2-30m+ outcrop widths however only schists & granite in drilling	
ANDRC001		436386	7276122	520	260	-60	77		Quartz ridge core, and historical working nearby to northwest.	
	Andrada LCT8							RC	Significant mica schist intercepted, >20m.	
ANDRC002	LOID	436393	7276086	520	260	-60	79		Pegmatite 25-27m; peg. 34-37m; peg. 67-79m (EOH)	
ANDRC023		436301	7276234	518	260	-60	60		Pegmatite 1-36m	
ANDRC024		436292	7276272	518	260	-60	60		Pegmatite 4-10m; tourmalinite 10- 11m; pegmatite 33m	
ANDRC003		436357	7276395	518	260	-60	86		~2m true width outcrop pegmatite 25m+ shallow old workings likely for beryls; only granite in drilling	
ANDRC004	Andrada LCT7	436311	7276390	518	260	-60	73	RC	Granite only	
ANDRC005		436347	7276432	518	260	-60	57		Granite only	
ANDRC006		2006	436382	7276792	518	260	-60	45		Diffuse thin pegmatites on surface; trace beryls;
ANDICOUC		430302	1210132	510	200	-00	40		Pegmatite 1-13m, ~13m width	
ANDRC017	Andrada LCT6	436406	7276799	518	260	-60	61	RC	Diffuse thin pegmatites; trace beryls; Pegmatite 1-3m	
ANDRC019		436416	7276758	518	260	-60	60		Only granite in drilling	
ANDRC018		436400	7276837	518	260	-60	60		Pegmatite 35-36m	
ANDRC007		436065	7277268	518	260	-60	53		Massive muscovite / feldspars coarse-grained pegmatoid, old working;	
	Andrada LCT5	430000	1211200	010	200	-00	00	RC	Minor anomalous single meter zones with surface ~3m pegmatite scree; Pegmatite 3m	
ANDRC031		436025	7277055	518	260	-60	89		Pegmatite 21-89m (EOH)	

Table 4. Andrada β Drill Table

Hole ID	Prospect Name	Easting	Northing	RL (m)	Mag Azimuth (°)	Dip (°)	Depth (m)	Drill Type*	Lithology / Comment
ANDRC008	Andrada	437566	7276214	520	320	-60	50		Granite
ANDRC009	LCT11	437432	7276068	520	310	-60	50	RC	Strikes 218 deg; granite
ANDRC010		437484	7275884	520	280	-60	50		Strikes 190 deg, ~8m true width; granite
		107505		500			50		Strikes 230 deg;
ANDRC011		437585	7275771	520	320	-60	50		Pegmatite 1-34m. 34m intercepted from surface; >17m true width
ANDRC013	Andrada	437631	7275783	520	320	-60	60		Pegmatite at 60m
ANDRC014	LCT12	437568	7275730	520	320	-60	58		Granite only
		437437	7275672	500	280	-60	50	RC	Strikes 190 deg; granite only
ANDRC012		437437	1215612	520	280	-60	50		Pegmatite 1-15m; 18-50m ~ 33m pegmatite intercepted to EOH at 50m
ANDRC015		437419	7275676	520	280	-60	58		~58m Pegmatite intercepted to EOH at 58m
ANDRC021		437458	7275664	520	280	-60	124		Pegmatite 1-22m; 29-58m. 22m pegmatite from surface; 20m pegmatite from 29m to EOH at 124m
ANDRC020		437401	7275678	520	280	-60	142		Pegmatite 51-68m; 74-123m; 135-140m; 50m Pegmatite intercepted from 74m
ANDRC016		438071	7276418	522	280	-60	39		Considerable quartz vein ridge and associated tourmalinitised pegmatite; schists + SZ in drilling
ANDRC022	Andrada LCT10	438067	7276417	522	280	-60	75		Mica schist SZ 5-41m
ANDRC025	LOTIO	437999	7276472	521	100	-60	125	RC	Mafic unit; Mica schist; Pegmatite 35m; 67-70m; 96-101m; 105-107m
ANDRC026		437971	7276435	521	100	-60	125		Pegmatite 15-22m; 23-27m; 28-30m; 31-36m; 37-46m; 74-77m; 107m; 116-121m
ANDRC027		438078	7276458	523	280	-60	100		Pegmatite 4-8m; 20-24m; 56m; 78m; 85-90m
ANDRC028	Andrada	437988	7276077	520	280	-60	127		Pegmatite 44-46m; 56-62m; 68-88m; 96m-127m qtz-rich pegmatite EOH
ANDRC029	LCT13	438048	7276065	520	280	-60	125	RC	Pegmatite 36-37m
ANDRC030		437908	7276091	520	96	-60	125		Pegmatite 29-30m; 39-40m; 49-53m; 70-71m; 92- 100m

Appendix 2 JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected at 1m intervals and composited to 4m lengths for analysis. The 4m composite or 1m sample (where submitted) will be crushed and a sub-fraction obtained for pulverisation. Drillholes were located using hand-held GPS. Sampling was carried out under Voltaic Strategic Resources Ltd protocols and QAQC procedures as per current industry practice. RC drilling was used to obtain 1m samples collected through a splitter into buckets and placed in bags as 1m samples, in rows of 20. Sample quality was supervised with any sample loss or moisture recorded. Composite samples were collected with a tube spear to generate 4m composite samples. The 2-3 kg (4 m composite) samples will be dispatched to LabWest laboratories in Perth. All samples will be analysed using Microwave digest (MD), Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) to finish. 62 element analysis by ICP-MS/OES.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling For phase 1, the drilling contractor was AAC Pty Ltd, used a 4inch rod string and RC hammer. For Phase 2 Bartlett Drilling Pty Ltd were employed who used a 4inch rod string and RC hammer. Drillholes were drilled at -60° dip
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality was recorded. Sample recoveries were visually estimated and recorded and generally high. The drill cyclone was cleaned between rod changes and at the end of each hole, to minimise contamination.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were logged geologically by Company geologists, using VSR logging codes. Logging is both qualitative and quantitative in nature, and includes lithology, mineralogy, mineralisation, weathering, & colour. Photographs taken of the drill chips for each drillhole and stored in a database. All drillholes were logged in full. In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation (if reported) in preliminary geological logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material 	 Current sampling includes comprehensive and industry standard QAQC inclusive of split and duplicate samples, and applicable and representative standards for lithium. Samples were collected at 1m intervals by a rig mounted cyclone.

Criteria	JORC Code explanation	Commentary
	collected, including for instance results for field duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Drill samples were analysed by Labwest Minerals Analysis Pty Ltd in Perth. The sample analysis uses multi-acid microwave digest with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish. The laboratory followed appropriate industry standard sample preparation and analytical procedures and included an appropriate number of QAQC assay checks Pegmatite mineralisation was identified by Microanalysis Australia Pty Ltd using quantitative X-ray diffraction (XRD) analysis. XRD is a non-destructive, mineral analysis technique used to determine the crystalline structure of a solid and quantitatively determine the phases present. No standards were used in the quantification process.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical QC is monitored by the laboratory using standards and repeat assays. Independent standards were submitted by the Company at a rate of 1:25 samples. Independent field duplicates were not conducted for and were not considered necessary for this early stage of exploration. Lithium element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as per industry standards
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adeguacy of topographic control. 	 Drill collar locations were surveyed using a handheld GPS using the UTM coordinate system, with an accuracy of +/- 5m Map coordinates: all recorded in MGA Zone 50 GDA
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is suitable for reporting of exploration results. Drill spacing is not suitable for Mineral Resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill planning was undertaken at a perpendicular angle to the targeted lithological unit. Sampling is regarded to be unbiased with respect to the orientation of the lithologies.
Sample security	The measures taken to ensure sample security.	 Samples are given individual samples numbers for tracking. The sample chain of custody is overseen by the Company's Exploration Manager. Samples were transported in secure sealed bags to the laboratory Sample security and integrity is in place to industry standards
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. External audits of the data have not been completed.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project area is located approximately 100km northeast of the Gascoyne Junction and 250km east of Carnarvon. The Ti Tree project comprises one granted Exploration Licence, E09/2503, and two Exploration Licence Applications: E09/2470 and E09/2522. All activities referred to in this announcement pertain to E09/2503 All the tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Numerous exploration campaigns have been completed in the general area since the early 1970's focusing predominantly on uranium and diamonds. Historical exploration activity has been extensive throughout the region occurring during four (4) main phases (WAMEX Report 114/263); 1970's (uranium focus); 1980's (largely base metals plus lesser uranium); 1990's (base metals); and 2000's (uranium or work on other commodities). Limited exploration to determine the potential for gemstones, Industrial minerals (mica & tournaline) & rare earths within pegmatites within the Gascoyne Complex has also been undertaken. Although not on Voltaic's tenement, drilling in the area has largely been restricted to the 1970's & 1890's, with AGIP Nucleare conducting extensive drilling within and beyond the Mortimer Hills region. Despite the extensive exploration history, reliability of the data (location and analysis OA/QC information) is equivocal, being limited to hand drafted maps (using local grids), and frequently absent assay data (WAMEX Report 114635). Some more significant and relevant exploration work is outlined below. Noranda Australia Ltd (1972-1974): focussed on the eastern side of Voltaic's ground, exploration followed up on an earlier airborne radiometry over 2.5-line kilometres and the collection of 112 soil samples that were subsequently analysed for uranium (poor results). Groundwork observed concentration of uranium in silica (slicrete) capped claype vail profile developed above weathered granite/gneiss. The silicret cap was observed to mask the radiometric anomaly with best readings restricted to exposed and eroded margins. Anomalous results were returned by "green clays" in the regolith profile with results up to 1,200 occurrences of secondary camotite mineralisation were in the Mt Phillips and Glenburgh 1:250,000 map sheet areas, albeit south of Voltaic's ground. Occurrences were normalily found at the contact of the calcrete with the underlying basement and below the silcrete

Criteria	JORC Code explanation	Commentary
		 (WAMEX Report 239038), with tungsten mineralisation considered to be poddy and not of economic interest. Geographe Resources Exploration (1997 – 1998): work included acquisition of aero magnetometry data and the collection of 58 BLEG stream sediment samples (5kg <2 mm). Gold and base metals were being targeted, and U was included as one of the suites of 12 elements that were analysed. All samples returned less than the detection limit of 0.1 pp except for two samples on a single drainage that contained 0.6 ppb and 0.3 ppb U, respectively (WAMEX Report 55760). More recent exploration 2006 - 2017 (RiverRock Energy Ltd, Dynasty Metals, Glengarry Resources, Zeus Resources and Segue Resources) included 69 rock chip samples collected over an area contiguous with E09/2503 and extending along trend to the southeast, but along with stream sediment sampling results were spurious (WAMEX Report 76652, 66179 & 94734). Most recently, Arrow Minerals (2011-2020) undertook stream sediment sampling (133 samples), rock chip sampling (11 samples) over a portion of the tenement area. The stream sediment survey was carried out to test a suite of intrusive rocks that had previously been identified as a fertile and fractionated peraluminous leaucratic intrusions with LCT pegmatites. Samples consisted of 50-150 grams of -80 mesh (-177 micron) material from secondary and tertiary streams on a 1-3 samples per square kilometre basis. All samples were submitted to ALS Laboratories in Perth and analysed for 47 elements by technique ME-MS61L which is a 4-acid digest with an ICPMS and ICPAES finish (WAMEX Report 124242). A strong correlation was identified amongst the LCT Pegmatite pathinder elements (Li-Cs-Ta + Be, Rb, Nb, Sn), successfully identifying several multi-point anomalies. Consulting geochemist Dr. N Brand concluded that these results supported the tenement's potential to host an LCT pegmatite. Despite that conclusion, the ground was surrendered in 2020 (WAMEX Report 124242).
Geology	Deposit type, geological setting and style of mineralisation.	 The project area has historically been considered prospective for unconformity vein style uranium, although it equally considered prospective for rare earth element (REE) mineralisation hosted in iron-rich carbonatite dykes or intrusions, or lithium-caesium-tantalum (LCT) pegmatites. The project area encompasses a portion of the Gascoyne Province of the Capricorn Orogen. This geological belt is positioned between the Archaean Yilgarn Craton to the south, and the Archaean Pilbara Craton to the north, and largely consists of a suite of Archaean to Proterozoic gneisses, granitic and metasedimentary rocks. The tenements lie astride the contact between a tight WNW trending syncline of Meso Proterozoic age rocks of the Bangemall Basin, known as the Ti Tree Syncline, and metamorphic rocks of the Gascoyne Complex. Bangemall Group sediments preserved in the syncline include the basal Irregully Dolomite, overlain by black and grey siltstone and shale of the Jillawarra Formation. They are intruded by thick dolerite sills. Rocks immediately underlying the Bangemall Group rocks consist of phyllite, meta conglomerate and meta sandstone of the Mt James subgroup. Within the Ti Tree project, historical exploration efforts have identified several anomalous uranium and potential LCT pegmatite samples. The ground truthing of the anomalies remains a priority prior to significant exploration activities. The project is within a prospective corridor of pegmatites where a recent exploration effort on within and adjacent to the Thirty-Three Supersuite granites on adjacent tenements has identified the presence of highly anomalous Li and Ta from geochemical analysis, geophysical & hyperspectral surveys, and drilling.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is 	Drill collar and survey data are provided, along with various respective metadata

Criteria	JORC Code explanation	Commentary
	not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals that comprise more than one sample have been reported using length-weighted averages. A cut-off grade of 200ppm Li₂O (with a maximum 2m of internal waste) has been used for the reported drill intercepts which is deemed acceptable for vectoring within LCT pegmatite systems.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The orientation of the mineralisation is interpreted and yet to be structurally validated. All reported intervals, and therefore intercepts, are down hole lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in this announcement with sections and map plans created using MicroMine and Mapinfo software respectively.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 No inference to economic mineralisation has been stated. A cut-off of 200ppm Li₂O was used in reporting of exploration results, to aid dismissing interpreted unrealistic anomalous mineralised sub-zones.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All of the relevant data has been included in this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the project area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping, rockchip sampling, acquisition of high-resolution geophysical data and arial drone imagery to assist geological interpretation, target identification, pXRF soil sampling campaigns and drilling.

About Voltaic Strategic Resources

Voltaic Strategic Resources Limited explore for the next generation of mines that will produce the metals required for a cleaner, more sustainable future where transport is fully electrified, and renewable energy represents a greater share of the global energy mix.

The company has a strategically located critical metals portfolio led by lithium, rare earths, base metals, and gold across two of the world's most established mining jurisdictions: Western Australia & Nevada, USA.

Voltaic is led by an accomplished corporate and technical team with extensive experience in REEs, lithium and other critical minerals, and a strong skillset in both geology and processing / metallurgy.

