Voltaic Strategic Resources Limited ABN 66 138 145 114 Suite 2, 38 Colin Street West Perth WA 6005

ASX: VSR +61 8 6245 9821 info@voltaicresources.com voltaicresources.com

ASX Release

10 November 2023

Positive vectoring continues at Ti Tree Lithium project.

Highlights

'Phase 3' drill campaign assays received from the Company's 100%-owned Ti Tree Project, Gascoyne region, Western Australia.

- Phase-3 comprised 'first pass' drill testing at the Morpheus, Akira & Lewis prospects, plus additional exploration drilling at Andrada.
- Results from Akira display very encouraging lithium-caesium-tantalum (LCT) indicators:
 - o **High tantalum** (up to 507 ppm Ta₂O₅) & niobium (up to 1,239 ppm Nb₂O₅) from maiden program
 - o Large halo of anomalous lithium intercepted (110m @369ppm Li₂O from surface (ANDRC056))
 - Rubellite¹ crystals visually identified within prospective Leake Spring Metamorphic schists (Fig.2)
- Follow-up ground geophysics and detailed surface geochemical reconnaissance planned to delineate extents of discovered stacked LCT rubellite-schists and rare metal pegmatites
- Pegmatite fractionation observed to increase radially outward to the north / northeast towards Akira, Morpheus & Lewis which is conformable to the classic LCT 'Goldilocks' model
- Regional target generation advances with wide spaced soils (pXRF 200 x 80m) over entire meta-sedimentary schist corridor (~8km), and across broad mafic intrusives (~12km)
- Strong cash position (A\$6.7M)² to keep advancing towards a lithium discovery at Ti Tree

Voltaic Strategic Resources Ltd (ASX:VSR) ('Voltaic' or the 'Company') has received assays from a third phase of drilling at the Ti Tree lithium project focusing on the 'Morpheus', 'Lewis' and 'Akira' prospects. The program, which achieved a total of 25 holes for 3,095 metres, was designed to test several new targets across the southern end of the extensive 80km+ 'Volta' corridor, as well as the down-dip continuity and potential bounding lithological contacts for select pegmatites previously drilled at 'Andrada' (see *Figure 1*).

Drilling has confirmed that the pegmatites at Ti Tree (South) are conformable to the classic LCT 'Goldilocks' model with zonation & fractionation increasing outward from parental granite source. Akira has been identified as a high priority LCT prospect for follow-up with highly anomalous tantalum and a halo of lithium anomalism over large intercepts, plus the presence of rubellite.

Follow-up surface reconnaissance is underway focusing on Ti Tree (North) E09/2522 and Ti Tree (Southeast) E09/2470 where limited exploration has been undertaken to date. Andrada, Morpheus, Lewis and Akira are just four of 18 priority target areas identified at Ti Tree to date.

¹ See ASX:VSR release dated 31/10/2023 'Quarterly Activities/Appendix 5B Cash Flow Report'.

² Rubellite is lithium & boron-bearing tourmaline mineral which is commonly exploited as a gemstone from highly fractionated pegmatites and pegmatite-related skarns (Dill, HG 2015, 'Pegmatites and aplites: Their genetic and applied ore geology', Ore Geology Reviews, vol. 69, pp 417-561).

Voltaic Chief Executive Officer Michael Walshe said the Company is rapidly advancing through the systematic exploration program at Ti Tree and are gaining greater geological understanding of the substantial pegmatite system emerging at the project and the controls on mineralisation.

"We are very encouraged by the observations from the drilling undertaken at the project to date including elevated tantalum, and increasing pegmatite fractionation at Akira which aligns with the classic LCT 'Goldilocks' model. Moreover, the identification of a large halo of lithium anomalism within rubellite-schists and rare metal pegmatites has significantly increased the prospectivity at Akira where exploration is still at a very nascent stage with only two shallow holes completed so far" Mr Walshe said.

"Our next focus will be a follow-up gravity survey at Akira along with infill surface reconnaissance, plus target generation at Ti Tree (North) which is proximal to Delta Lithium's Jameson prospect, and surface reconnaissance at Ti Tree (Southeast) E09/2470 which overlays a large mafic intrusion" he said.

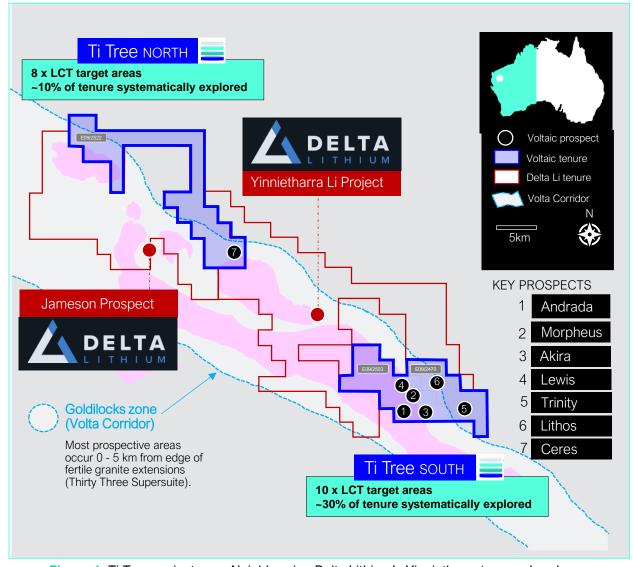


Figure 1. Ti Tree project map. Neighbouring Delta Lithium's Yinnietharra tenure also shown.

³ LCT pegmatites are generally emplaced ~0-10 km of fertile granites ("goldilocks" zone). At Ti Tree, our current modelling indicates that this could be 0.5 – 5 km. Reference: Cerny, P, 1989, 'Exploration strategy and methods for pegmatite deposits of tantalum', *In Lanthanides, Tantalum, and Niobium*, Springer-Verlag, New York, pp. 274-302.

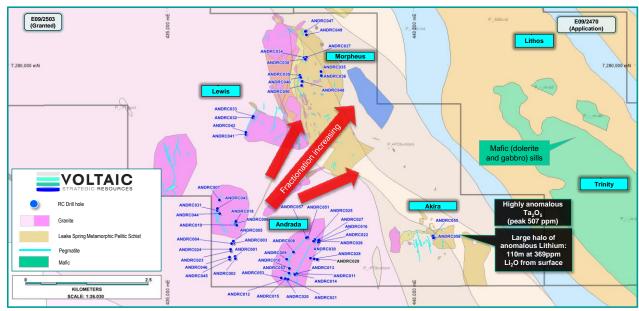


Figure 2. Drill map plan of Andrada, Lewis, Morpheus & Akira prospects at Ti Tree (South)

Table 1. Phase2/3 Drill table – significant LCT vectoring intersections

DRILL HOLE		INTERSECTION
ANDRC033 (Lewis)		4m @ 646ppm Li₂O from 56m
ANDRC039 (Morpheus)		1m @ 736 ppm Li ₂ O from 59m
ANDRC043 (Andrada)	incl:	1m @ 764ppm Li₂O from 60m 4m @ 594ppm Li₂O from 100m
		2m @ 640ppm Li ₂ O from 160m
AND DOGG ((A) I)	incl:	1m @ 753ppm Li ₂ O from 160m
ANDRC044 (Andrada)	***	22m @ 235 ppm Li ₂ O from 9m
	with peak of:	1m @ 596ppm Li₂O from 29m
ANDRC046 (Andrada)		1m @ 508ppm Li ₂ O from 133m
ANDRC047 (Morpheus)		1m @ 616 ppm Li ₂ O from 172m
ANDRC049 (Morpheus)		4m @ 801 ppm Li ₂ O from 128m
ANDRC050 (Morpheus)		4m @ 642ppm Li ₂ O from 156m
ANDRC052 (Andrada)		4m @ 969 ppm Li ₂ O from 96m
ANDRC055 (Akira)		44m @ 314ppm Li2O from 4m
	incl:	1m @ 484ppm Li2O from 45m
		2m @ 1,613ppm Rb ₂ O from 57m
		1m @ 131ppm Ta ₂ O ₅ from 59m
		51m @ 348ppm Li ₂ O from 61m
	incl:	1m @ 642ppm Li ₂ O from 63m
ANDRC056 (Akira)		110m @ 369ppm Li₂O from surface
	incl:	1m @ 568ppm Li ₂ O from 24m
		1m @ 507ppm Ta ₂ O5 and 1,239 ppm Nb ₂ O ₅ from 27m
	a made	1m @ 1,302 ppm BeO from 28m
	and:	3m @ 524ppm Li ₂ O from 29m
	and.	1m @ 337ppm Ta ₂ O ₅ and 625ppm BeO from 42m
	and:	4m @ 525ppm Li ₂ O from 43m
	and:	1m @ 698ppm Li ₂ O from 71m
	and:	6m @ 608ppm Li ₂ O from 104m

Figure 3. Interpreted rubellite / almandine garnet crystals found within Leake Spring Metamorphic (LSM) schist and rubellite/pegmatite contact (Akira prospect, ANDRC056, metre 43) 4

Figure 4. & Akira prospect at Ti Tree (South)

⁴ With respect to the disclosure of visual mineral identification, the Company cautions that visual estimates should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation in preliminary geological logging.

The next steps at Ti Tree Project

- Surface reconnaissance is currently underway at Ti Tree (Southeast) E09/2470 where limited exploration has been undertaken to date and comprises mapping and a wide spaced soil survey (pXRF 200 x 80m) over the entire meta-sedimentary schist corridor (~8km), and across the broad package of mafic intrusives (~12km).
- Subsequently, attention will be turned to Ti Tree (North) E09/2522 which is proximal to Delta Lithium's 'Jameson' prospect. Minimal exploration has been undertaken on E09/2522 to date.
- Follow-up exploration is planned at Akira including a ground gravity survey and detailed surface geochemical reconnaissance to delineate extents of discovered stacked LCT rubellite-schists and rare metal pegmatites.
- Advancements are being made towards the granting of tenements E09/2470 and E09/2522 and the Company will provide an update in due course.
- Drill targeting and planning is ongoing.
- The Company has engaged the services of Xplore Global, a UK-based geological consultancy with specialisation in the areas of LCT pegmatite targeting, geochemistry and interpretation. Dr Benedikt Steiner (Principal) is a globally renowned expert in LCT geochemistry and is a Qualified Person under JORC regulations & NI43-101.

Figure 5. Planned and completed soil survey points at Ti Tree South/Southeast

Figure 6. Ongoing exploration at Ti Tree

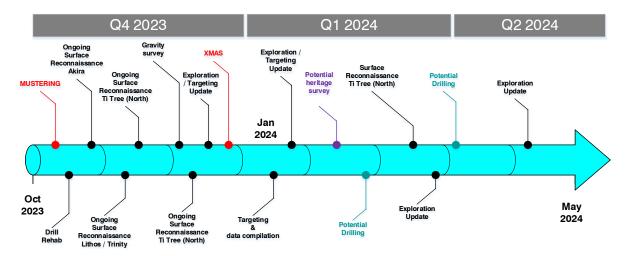


Figure 7. Three (3) quarter lookahead at Ti Tree.

Release authorised by the Board of Voltaic Strategic Resources Ltd.

For more information, please contact:

MICHAEL WALSHE

Chief Executive Officer Phone: +61 8 6245 9821

michael.walshe@voltaicresources.com

GARETH QUINN

Media and Investor Relations Phone +61 417 711 108 gareth@republicpr.com.au

Competent Person Statement

The information in this announcement related to Exploration Results is based on and fairly represents information compiled by Mr Claudio Sheriff-Zegers. Mr Sheriff-Zegers is employed as an Exploration Manager for Voltaic Strategic Resources Ltd and is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. He consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

Forward-Looking Statements

This announcement may contain forward-looking statements involving several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update statements if these beliefs, opinions, and estimates should change or to reflect other future development. Furthermore, this announcement contains forward-looking statements which may be identified by words such as "prospective", "potential", "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on several assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions, and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company cannot and does not give assurances that the results, performance, or achievements expressed or implied in the forward-looking statements.

About Voltaic Strategic Resources

Voltaic Strategic Resources Limited explore for the next generation of mines that will produce the metals required for a cleaner, more sustainable future where transport is fully electrified, and renewable energy represents a greater share of the global energy mix.

The company has a strategically located critical metals portfolio led by lithium, rare earths, base metals, and gold across two of the world's most established mining jurisdictions: Western Australia & Nevada, USA.

Voltaic is led by an accomplished corporate and technical team with extensive experience in REEs, lithium and other critical minerals, and a strong skillset in both geology and processing / metallurgy.

Appendix 1: Supplementary Information

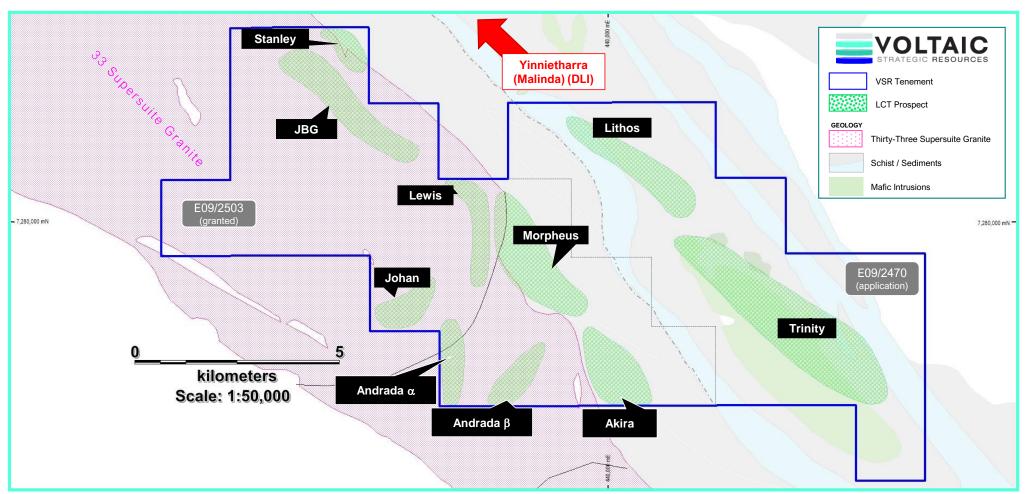


Figure 8. Ti Tree (South) regional prospects.

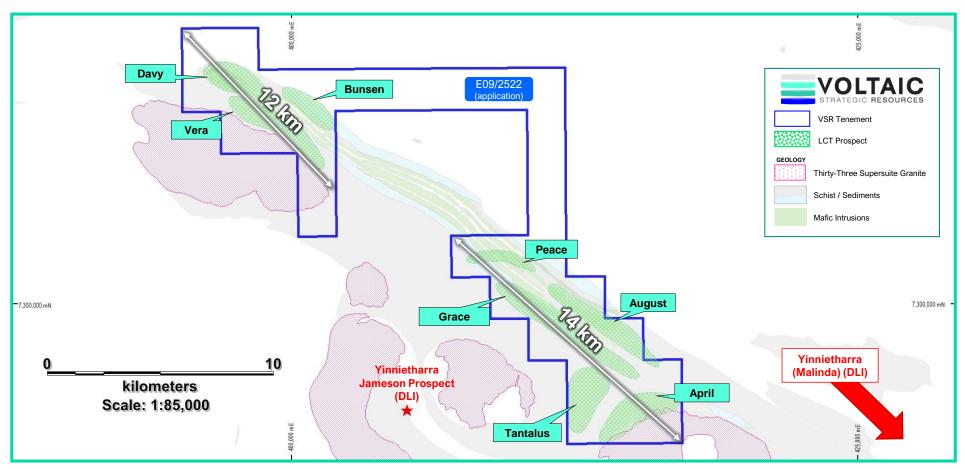


Figure 9. Ti Tree (North) regional prospects

CROSS SECTIONS FROM AKIRA PROSPECT

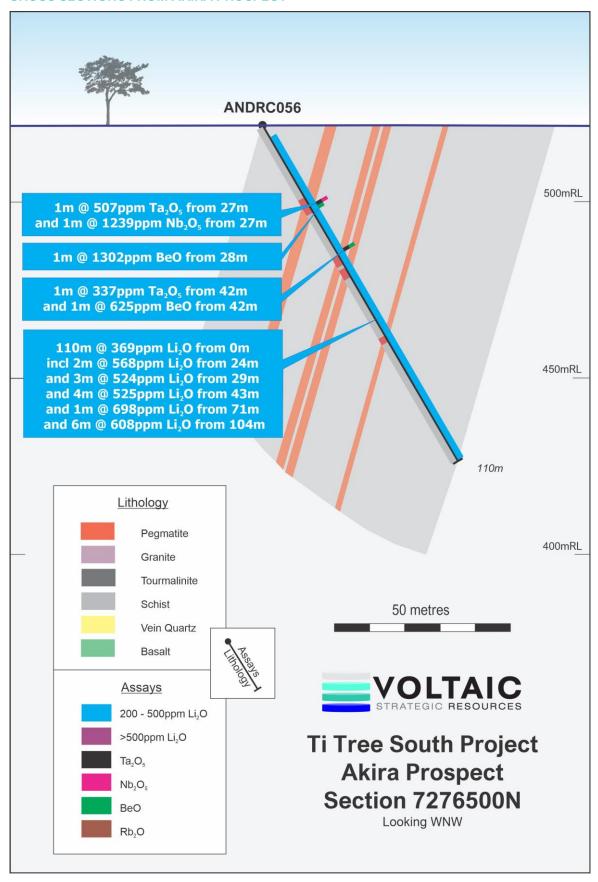


Figure 10. Akira section 7276500N Significant intercepts

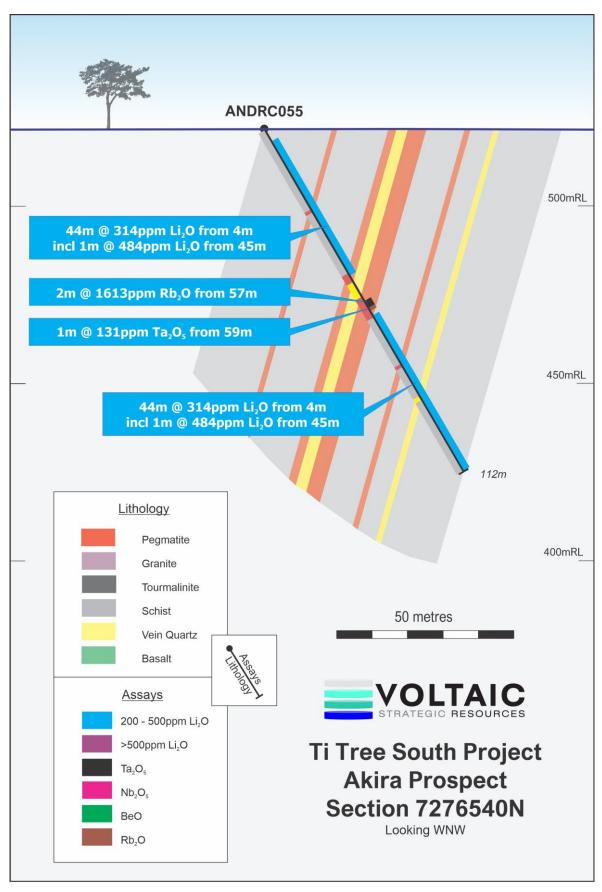


Figure 11. Akira section 7276540N Significant intercepts

Table 2. Akira, Lewis & Morpheus Drill Table

Hole ID	Prospect Name	Depth (m)	Pegmatite intercept (m)	Intercept
ANDRC032		70	NSI	NSI
ANDRC033	70 Lewis -		NSI	4m @ 646ppm Li ₂ O from 56m
ANDRC041	LCT 9	80	NSI	NSI
ANDRC042		75	NSI	4m @ 224ppm Li ₂ O from 24m 4m @ 254ppm Li ₂ O from 64m
ANDRC055		112	48 - 62m; 78m	44m @ 314ppm Li₂O from 4m, incl. 1m @ 484ppm Li₂O from 45m 2m @ 1,613ppm Rb₂O from 57m 131ppm Ta2O5 from 59m 51m @ 348ppm Li₂O from 61m, incl. 1m @ 642ppm Li₂O from 63m
ANDRC056	Akira	110	26 - 29m; 70 - 71m;	110m @ 369 ppm Ll₂O from surface, incl. 2m @ 568ppm Ll₂O from 24m 1m @ 507ppm Ta2O5 and 1,239 ppm Nb2O5 from 27m 1m @ 1,302 ppm BeO from 28m and 3m @ 524ppm Ll₂O from 29m 1m @ 337ppm Ta2O5 and 625ppm BeO from 42m and 4m @ 525ppm Ll₂O from 43m and 1m @ 698ppm Ll₂O from 71m and 6m @ 608ppm Ll₂O from 104m
ANDRC034		74	21m; 24 - 25m; 33 - 34m; 53 - 56m;	NSI
ANDRC035		60	22m; 25 - 26m;	1m @ 208ppm Li ₂ O from 26m
ANDRC036		84	16 - 21m ; 30 - 36m; 55 - 58m; 65 - 66m; 68m; 74 - 76m;	1m @ 213ppm Li₂O from 28m
ANDRC037	Morpheus - LCT 15	162	96 - 110m;	NSI
ANDRC038		110	33 - 42m; 49 - 62m; 78 - 79m; 82 - 83m; 108 - 110m	1m @ 478ppm Li₂O from 63m
ANDRC039		108	8 - 11m; 20 - 34m; 54 - 58m;	1m @ 736ppm Ll ₂ O from 59m
ANDRC040		130	36 -44m; 68 - 70m; 89m; 106m; 121 - 124m;	NSI
ANDRC047	Morpheus - LCT 14	180	81 - 114m; 120 - 121; 125 - 126m;	4m @ 525ppm LkO from 12m 1m @ 411ppm LkO from 117m 1m @ 616ppm LkO from 172m
ANDRC048	Morpheus - LCT 15	180	72m; 76 -78m; 80 - 82m; 116 - 122m; 134m; 154m; 163 - 164m;	10m @ 203ppm Li₂O from 122m
ANDRC049	Morpheus - LCT 14	200	79 - 80m; 111 - 113m; 121m; 170 - 171m; 200m	4m @ 400ppm Li ₂ O from 88m 4m @ 801ppm Li₂O from 128m 1m @ 203ppm Li ₂ O from 199m
ANDRC050	Morpheus - LCT 15	210	71m; 79m; 86 - 96m; 115 - 144m; 171 - 173m;	4m @ 215ppm Li₂O from 72m 1m @ 210ppm Li₂O from 85m 4m @ 379ppm Li₂O from 100m 2m @ 222ppm Li₂O from 112m 2m @ 270ppm Li₂O from 120m 4m @ 642ppm Li₂O from 156m

Table 3. Andrada Drill Table A (Phase 1/2)5

Hole ID Prospect Name Depth (m) Pegmatite intercept (m) Intercept ANDRC001 77 - 20m @ 397ppm Li₂O from 28m, with peak 4m ANDRC002 79 25-27m; 34-37m; 67-79m 8m @ 287ppm Li₂O from 48m, 5m @ 259ppm Li₂O from 64m, with peak 1m @ 1m @ 215ppm Li₂O from 48m ANDRC023 60 1-36m 1m @ 215ppm Li₂O from 48m ANDRC024 60 4-10m; 33m 6m @ 247ppm Li₂O from 10m 1m @ 210ppm Li₂O from 28m 6m @ 287ppm Li₂O from 34m ANDRC003 86 - 1m @ 230ppm Li₂O from 84m	
ANDRC002 ANDRC002 Andrada LCT8 Andrada LCT8 ANDRC024 Andrada LCT8	
ANDRC022 ANDRC023 Andrada LCT8 Andrada LCT8 Andrada LCT8 Andrada LCT8 ANDRC024 Andrada LCT8 Born @ 25-27/m; 34-3/m; 67-79m 5m @ 259ppm Li₂O from 39m 4m @ 241ppm Li₂O from 10m 1m @ 210ppm Li₂O from 10m 1m @ 210ppm Li₂O from 28m 6m @ 287ppm Li₂O from 34m 1m @ 230ppm Li₂O from	
ANDRC023 60 1-36m 4m @ 241ppm Li₂O from 48m ANDRC024 60 4-10m; 33m 6m @ 247ppm Li₂O from 28m 6m @ 210ppm Li₂O from 28m 6m @ 230ppm Li₂O from 34m 1m @ 230ppm Li₂O from 84m	② 359ppm Li₂O from 67m
ANDRC024 60 4-10m; 33m 1m @ 210ppm Li₂O from 28m 6m @ 287ppm Li₂O from 34m 1m @ 230ppm Li₂O from 34m	
ANDRC003 86 - 1m @ 230ppm Li ₂ O from 84m	
ANDRC004 Andrada LCT7 73 - NSR	
ANDRC005 57 - NSR	
ANDRC006 45 1-13m 7m @ 305ppm Li ₂ O from 14m, with peak 1m (@ 428ppm Li₂O from 14m
ANDRC017 61 1-3m 20m @ 223ppm Li2O from 12m	
ANDRC019 Andrada LCT6 8m @ 253ppm Li2O from surface	
ANDRC018 60 36m 8m @ 254ppm Li2O from 24m	
ANDRC007 53 3m 12m @ 305ppm Li ₂ O from 4m, with peak 1m @	2 721ppm Li₂O from 4m
ANDRC031 Andrada LCT5 89 21-89m 16m @ 217ppm Li2O from 4m	
ANDRC008 50 - 16m @ 239ppm Li₂O from 4m 12m @ 217ppm L₂O from 36m	
ANDRC009 Andrada LCT11 50 - NSR	
ANDRC010 50 - 1m @ 323ppm Li₂O from 41m 1m @ 239ppm Li₂O from 50m (EOH)	
ANDRC011 50 1-34m 1m @ 329ppm Li2O from 37m 1m @ 394ppm Li2O from 50m (EOH)	
ANDRC013 60 60m 16m @ 210ppm Li₂O from 4m, with peak 1m @ 4m @ 212ppm Li₂O from 28m	② 379ppm Li₂O from 10m
ANDRC014 58 - 2m @ 215ppm Li2O from 23m	
ANDRC012 2m @ 300ppm Li₂O from 16m 1m @ 210ppm Li₂O from 22m 1m @ 228ppm Li₂O from 29m	
ANDRC015	
ANDRC021 LCT12 2m @ 286ppm Li ₂ O from 12m, with peak 1m @ 8m @ 248ppm Li ₂ O from 22m, with peak 1m @ 11-22m; 29-58m 124 1-22m; 29-58m 2m @ 286ppm Li ₂ O from 12m, with peak 1m @ 11m @ 212ppm Li ₂ O from 60m 3m @ 235ppm Li ₂ O from 87m 10m @ 219ppm Li ₂ O from 82m with peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m @ 11 peak 1m @ 304ppm Li ₂ O from 87m, 1m D @ 304ppm Li ₂ O from 87m, 1m D @ 304ppm Li ₂ O from 87m, 1	⊉ 514ppm Li₂O from 22m
ANDRC020 ANDRC020 142 51-68m; 74-123m; 135- 140m 140m 7m @ 295ppm Li₂O from 44m, with peak 1m @ 5m @ 462ppm Li₂O from 69m, with peak 1m @ 2m @ 336ppm Li₂O from 95m, with peak 1m @ 1m @ 206ppm Li₂O from 101m 1m @ 254ppm Li₂O from 105m 1m @ 245ppm Li₂O from 124m	2 521ppm Li₂O from 73m
ANDRC016 39 - N/A	
ANDRC022 75 - NSR	
ANDRC025 Andrada LCT10 125 35m; 67-70m; 96-101; 1m @ 254ppm Li₂O from 35m	
ANDRC026 125 23-27m; 31-36m; 74- 77m; 107m; 116-121m 2m @ 205ppm L₂O from 20m	
ANDRC027 100 4-8m; 20-24m; 56m; 1m @ 248ppm Li₂O from 28m 2m @ 307ppm Li₂O from 90m	
ANDRC028 127 44-46m; 56-62m; 68-88m; 96-127m 440-46m; 56-62m; 68-88m; 96-127m 440-46m; 56-62m; 68-88m; 96-127m 440-46m; 56-62m; 68-88m; 96-127m 440-217ppm Li ₂ O from 16m 1m @ 282ppm Li ₂ O from 53m 4m @ 334ppm Li ₂ O from 75m, inc 1m @ 676p 1m @ 203ppm Li ₂ O from 90m 1m @ 282ppm Li ₂ O from 94m	
ANDRC029 Andrada 125 36-37m 10m @ 254ppm Li₂O from 24m 55m @ 266ppm Li₂O from 60m, inc 4m @ 465	5ppm Li ₂ O from 64m
ANDRC030 LCT13 1m @ 276ppm Li ₂ O from 28m 4m @ 248ppm Li ₂ O from 40m 1m @ 448ppm Li ₂ O from 50m 4m @ 229ppm Li ₂ O from 50m 4m @ 220ppm Li ₂ O from 56m 23m @ 317ppm Li ₂ O from 69m, and 1m @ 448 8m @ 256ppm Li ₂ O from 96m	8ppm Li₂O from 69m
ANDRC031 89 21-89m 16m @ 217ppm Li₂O from 4m 1m @ 235ppm Li₂O from 53m	

⁵ Refer ASX:VSR announcement dated 28/06/2023 'Thick stacked Pegmatite system emerging at Andrada prospect' for full details on phase 1 drilling including collars.

Table 4. Andrada Drill Table B

Hole ID	Prospect Name	Depth (m)	Pegmatite intercept (m)	Intercept
ANDRC043	Andrada - LCT 5	228	36 - 86m; 105 - 221m;	8m @ 239ppm Li₂O from surface 16m @ 254ppm Li₂O from 12m 1m @ 261ppm Li₂O from 48m 3m @ 365ppm Li₂O from 60m, inc 1m @ 764ppm Li₂O from 60m 1m @ 314ppm Li₂O from 74m 4m @ 202ppm Li₂O from 77m 20m @ 368ppm Li₂O from 86m, inc 4m @ 594ppm Li₂O from 100m 1m @ 489ppm Li₂O from 129m 2m @ 640ppm Li₂O from 186m, inc 1m @ 753ppm Li₂O from 160m 1m @ 422ppm Li₂O from 186m 7m @ 365ppm Li₂O from 221m, inc 1m @ 532ppm Li₂O from 221m
ANDRC044		200	1 - 10m;	22m @ 235ppm Li₂O from 9m, incl. 1m @ 596ppm Li₂O from 29m 16m @ 228ppm Li₂O from 44m 12m @ 207ppm Li₂O from 68m 12m @ 250ppm Li₂O from 112m 4m @ 224ppm Li₂O from 132m 4m @ 220ppm Li₂O from 152m 8m @ 239ppm Li₂O from 164m
ANDRC045	Andrada LCT 8	160	1 - 11m; 89 - 92m; 96 - 98m;	Assays pending
ANDRC046		160	1 -59m; 93 - 109m;	1m @ 431ppm Li ₂ O from 18m 1m @ 206ppm Li ₂ O from 59m 4m @ 256ppm Li ₂ O from 68m 1m @ 226ppm Li ₂ O from 111m 1m @ 508ppm Li ₂ O from 133m
ANDRC051	Andrada LCT 10	70	59 - 61m;	12m @ 202ppm Li ₂ O from 28m
ANDRC052	Andrada LCT 11	120	80 - 81; 107 - 108m; 113 - 114m;	4m @ 435ppm Li ₂ O from 20m 4m @ 969ppm Li₂O from 96m
ANDRC053	Andrada LCT 12	42	NA	NA – Water Bore
ANDRC057	Andrada LCT 10	100	9 - 10m; 19 - 20m; 65 - 66m;	4m @ 271ppm Li₂O from surface 20m @ 287ppm Li₂O from 12m, incl. 4m @ 383ppm Li₂O from 12m 1m @ 233ppm Li₂O from 67m

Table 5. Ti Tree South Phase 3 Drilling – Akira Prospect Key Intercepts

Hole ID	metres, from	metres, to	Li2O (ppm)	Cs2O (ppm)	Ta2O5 (ppm)	BeO (ppm)	Nb2O5 (ppm)	Prospect	Lithology
ANDRC055	57	58	133.7	130.4	26.7	47.7	128.6	Akira	Mica rich zone of pegm within enveloping schists.
ANDRC055	58	59	63.9	69.9	37.5	30.8	116.6	Akira	Quartz-fdsp-mica zone of pegm within enveloping schists.
ANDRC055	59	60	40.3	16.9	130.7	28.9	66.4	Akira	Quartz-fdsp-mica zone of pegm within enveloping schists
ANDRC055	61	62	434.8	138.9	26.9	154.3	43.2	Akira	Quartz-fdsp-mica border pegm on contact within enveloping schists
ANDRC056	26	27	366.0	142.1	113.3	494.1	82.0	Akira	Quartz-fdsp-mica border rubellite-almandine garnet pegm on contact within enveloping schists
ANDRC056	27	28	167.0	96.3	506.8	535.7	1,238.8	Akira	Quartz-fdsp-mica pegm within enveloping schists
ANDRC056	28	29	258.3	92.6	235.7	1301.9	290.4	Akira	Quartz-fdsp-mica border rubellite-almandine garnet pegm on contact within enveloping schists
ANDRC056	29	30	675.9	163.3	50.3	74.9	49.6	Akira	Garnet-trace rubellite schist on contact with quartz-fdsp- mica pegm
ANDRC056	42	43	325.1	152.7	337.0	624.6	96.6	Akira	Stacked LCT rubellite- almandine garnet schists and rare metal pegmatites contact
ANDRC056	70	71	166.8	49.2	122.1	129.9	109.3	Akira	Quartz-fdsp-mica border pegm within enveloping schists contact

 Table 6. Ti Tree South Phase 3 Drilling – Lithology of Significant Pegmatite Intercepts (Morpheus)

Prospect	Hole ID	Depth	Pegmatite intercept(s)	Intercept width	Comment
			21m	1	Stacked pegmatite
	ANDRC034	74	24 - 25m	2	24-25m; quartz-mica core; within enveloping schists
	ANDICOUS	′ ¯	33 - 34m	2	33-34m; quartz-mica core; within enveloping schists
			53 - 56m	4	Quartzite-pegmatite; garnet bearing; within enveloping schists
	ANDRC035	60	22m	1	Clay rich pegmatite
			25 - 26m	2	Fdsp-quartz pegmatite
			16 - 21m	6	Quartz-fdsp rich pegmatite; within enveloping schists
			30 - 36m	7	Quartz-fdsp rich pegmatite; within enveloping schists
	ANDRC036	84	55 - 58m	4	Quartz-fdsp-mica pegmatite ; within enveloping silicified schists
			65 - 66m	2	Mica rich pegmatite; within enveloping schists
			68m	1	Quartz-fdsp trace tourmaline; within enveloping schists
			74 - 76m	3	Quartz vein or pos quartz rich pegmatite within enveloping silicified schists
	ANDRC037	162	96 - 110m	15	Quartz-fdsp-mica pegmatite; within enveloping silicified schists
			33 - 42m	10	Stacked peg. Quartz-fdsp, minor mica, translucent vq core; within enveloping schists
	ANDROGGO	440	49 - 62m	14	Stacked pegmatite quartz-fdsp, mica, trace garnet & tourmaline; within enveloping schists
	ANDRC038	110	78 - 79m	2	Quartz-fdsp pegmatite; within enveloping silicified schists
			82 - 83m	2	Quartz-fdsp minor mica pegmatite ; tourmalines, within enveloping silicified schists
			108 - 110m 8 - 11m	3	Vqs; 1% sulphs End of Hole (EOH)
	ANDRC039	108	20 - 34m	15	Quartz-fdsp pegmatite Quartz-fdsp minor tourmaline pegmatite
	ANDROUSS	100	54 - 58m	5	Quartz-fdsp-minor mica pegmatite , within enveloping silicified schists
			36 -44m	9	Quartz rich minor fdsp; vq, within enveloping schists
iens			68 - 70m	3	Quartz-fdsp-minor mica pegmatite , within enveloping silicified schists
Morpheus	ANDRC040	130	89m	1	Quartz vein
Š			106m	1	Quartz-fdsp-minor mica pegmatite , within enveloping silicified schists
			121 - 124m	4	Quartz-fdsp-minor mica pegmatite , within enveloping silicified schists
			81 - 114m	34	Quartz-fdsp minor mica pegmatite, within enveloping silicified schists
	ANDRC047	180	120 - 121	2	Quartz-fdsp minor mica pegmatite
			125 - 126m	2	Quartz-fdsp minor mica pegmatite
			72m	1	Quartz-fdsp pegmatite
			76 -78m	3	Quartz-fdsp pegmatite , vq
			80 - 82m	3	Quartz-fdsp pegmatite
	ANDRC048	180	116 - 122m	7	Quartz-fdsp pegmatite
			134m	1	Quartz-fdsp pegmatite
			154m	1	Quartz-fdsp pegmatite
			163 - 164m	2	Quartz-fdsp minor mica pegmatite
			79 - 80m	2	Quartz-fdsp pegmatite , within enveloping schists
			111 - 113m	3	Quartz-fdsp trace tourmaline pegmatite , within enveloping silicified schists
	ANDRC049	200	121m	1	Quartz-fdsp pegmatite
			170 - 171m	2	Quartz vein
		ļ	200m	1	Quartz-fdsp pegmatite atite EOH
			71m	1	Quartz-fdsp pegmatite
			79m	1	Quartz-fdsp pegmatite
	ANDRC050	210	86 - 96m	11	Quartz-fdsp pegmatite , within enveloping silicified schists
			115 - 144m	30	Quartz-fdsp minor mica & tourmalines pegmatite , within enveloping silicified schists
			171 - 173m	3	Quartz-fdsp minor mica & tourmalines pegmatite

Table 7. Ti Tree South Phase 3 Drilling – Lithology of Significant Pegmatite Intercepts (Akira, Andrada, Lewis)

Prospect	Hole ID	Depth	Pegmatite intercept(s)	Intercept width	Comment
	ANDRC055	112	48 - 62m	15	Quartz-rich fdsp-mica pegm within enveloping schists; 50-55m extremely clean silica vq; mica-rich 57-58m
<u> </u>	ANDROUSS	112	78m	1	Mica schist
Akira	ANDROOFO	440	26 - 29m	4	Quartz-fdsp-mica, trace rubellite-almandine garnet pegm on contact within enveloping schists
	ANDRC056	110	70 - 71m	2	Quartz-fdsp-mica, trace rubellite-almandine garnet pegm on contact within enveloping schists
	ANDD0043	200	36 - 86m	51	Quartz-fdsp-mica pegm; granitic/tourmalinite contacts
	ANDRC043	228	105 - 221m	117	Quartz-fdsp-mica pegm trace tourmaline; tourmalinite contacts
	ANDRC044	200	1 - 10m	10	Fdsp-quartz-mica pegm; granitic contact
			1 - 11m	11	Quartz-fdsp-mica-tourm pegm;
	ANDRC045	160	89 - 92m	4	Quartz-fdsp-mica pegm
			96 - 98m	3	Quartz-fdsp-mica pegm
g	ANDRC046	160	1 -59m	59	Quartz-fdsp-mica-tourm pegm
Andrada	ANDRC046	160	93 - 109m	17	Quartz-fdsp-mica-tourm pegm
Ā	ANDRC051	70	59 - 61m	3	Quartz-fdsp pegm
		120	80 - 81	2	Quartz-fdsp pegm
	ANDRC052		120	107 - 108m	2
			113 - 114m	2	Quartz-fdsp pegm
			9 - 10m	2	Quartz-fdsp-tourmaline pegm
	ANDRC057	100	19 - 20m	2	Quartz-fdsp-mica pegm
			65 - 66m	2	Quartz-fdsp pegm
	ANDRC032	70	NSI		NSI
Lewis	ANDRC033	70	NSI		NSI
Lev	ANDRC041	80	NSI		NSI
	ANDRC042	75	NSI		NSI

Table 8. Ti Tree South Phase 3 Drilling - Collars

Prospect	Hole ID	Easting GDA_94	Northing GDA_94	RL (m)	Mag Azimuth (°)	Dip (°)	Depth (m)	Date started	Date completed
	ANDRC034	437789	7280154	524	270	-60	74	13/08/23	13/08/23
	ANDRC035	438125	7279872	524	270	-60	60	13/08/23	14/08/23
	ANDRC036	438129	7279785	524	270	-60	84	14/08/23	14/08/23
	ANDRC037	437828	7280157	524	270	-60	162	14/08/23	14/08/23
sn	ANDRC038	437806	7280117	524	270	-60	110	14/08/23	14/08/23
Morpheus	ANDRC039	437701	7279792	524	260	-60	108	15/08/23	15/08/23
ĕ	ANDRC040	437713	7279753	524	270	-60	130	15/08/23	15/08/23
	ANDRC047	437805	7280684	524	250	-60	180	21/08/23	21/08/23
	ANDRC048	437741	7279668	524	280	-60	180	21/08/23	22/08/23
	ANDRC049	437830	7280612	524	250	-60	200	22/08/23	22/08/23
	ANDRC050	437733	7279588	524	280	-60	210	23/08/23	23/08/23
i.a	ANDRC055	440388	7276537	522	60	-60	112	25/08/23	25/08/23
Akira	ANDRC056	440401	7276503	522	60	-60	110	25/08/23	25/08/23
	ANDRC043	436022	7277093	524	250	-60	228	16/08/23	19/08/23
	ANDRC044	436076	7276995	524	260	-60	200	19/08/23	19/08/23
	ANDRC045	436272	7276069	521	80	-60	160	20/08/23	20/08/23
ada	ANDRC046	436274	7276111	521	80	-60	160	20/08/23	21/08/23
Andrada	ANDRC051	437855	7276502	524	300	-60	70	24/08/23	24/08/23
	ANDRC052	437479	7275789	524	280	-60	120	24/08/23	24/08/23
	ANDRC053	437317	7275693	524	0	-90	42	24/08/23	24/08/23
	ANDRC057	437830	7276502	524	60	-60	100	25/08/23	25/08/23
	ANDRC032	436741	7278933	524	290	-60	70	13/08/23	13/08/23
Lewis	ANDRC033	436757	7278965	524	290	-60	70	13/08/23	13/08/23
Le	ANDRC041	436600	7278597	524	280	-60	80	16/08/23	16/08/23
	ANDRC042	436604	7278640	524	280	-60	75	16/08/23	16/08/23

Appendix 2 JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected at 1m intervals and composited to 4m lengths for analysis. The 4m composite or 1m sample (where submitted) will be crushed and a sub-fraction obtained for pulverisation. Drillholes were located using hand-held GPS. Sampling was carried out under Voltaic Strategic Resources Ltd protocols and QAQC procedures as per current industry practice. RC drilling was used to obtain 1m samples collected through a splitter into buckets and placed in bags as 1m samples, in rows of 20. Sample quality was supervised with any sample loss or moisture recorded. Composite samples were collected with a tube spear to generate 4m composite samples. The 2-3 kg (4 m composite) samples will be dispatched to LabWest laboratories in Perth. All samples will be analysed using Microwave digest (MD), Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) to finish. 62 element analysis by ICP-MS/OES.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling For phase 1, the drilling contractor was AAC Pty Ltd, used a 4inch rod string and RC hammer. For Phase 2 Bartlett Drilling Pty Ltd were employed who used a 4inch rod string and RC hammer. Phase 3 KTE Mining Services Pty Ltd were employed who used a 5 and ¾ inch rod string and RC hammer. Drillholes were drilled at -60° dip
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality was recorded. Sample recoveries were visually estimated and recorded and generally high. The drill cyclone was cleaned between rod changes and at the end of each hole, to minimise contamination.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were logged geologically by Company geologists, using Company logging codes. Logging is both qualitative and quantitative in nature, and includes lithology, mineralogy, mineralisation, weathering, & colour. Photographs taken of the drill chips for each drillhole and stored in a database. All drillholes were logged in full. In relation to the disclosure of visual mineralisation (if applicable herein), the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation (if reported) in preliminary geological logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise 	 Current sampling includes comprehensive and industry standard QAQC inclusive of split and duplicate samples, and applicable and representative standards for lithium. Samples were collected at 1m intervals by a rig mounted cyclone. <u>pXRF Analysis</u> pXRF analysis of soil samples is deemed fit for purpose as a preliminary exploration screening technique. pXRF provides a spot reading on sample piles with variable grain sizes and states of homogenisation. High grade results

Criteria	JO	PRC Code explanation	Co	mmentary					
	•	representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.				tions to confirm repeatability. inary exploration results.	The competent	t person conside	s this acceptable within
Quality of assay data and laboratory tests	•	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	•	microwave dige Mass Spectrom The laboratory f appropriate nur pXRF screening portable XRF re – NOTE 1: – NOTE 2	est with an Industry (MS) and 0 followed appropriate of QAQC a g of drill samples aspectively p pXRF (portable	s and soil points preliminary are ex-ray fluorescence) assay re a selection of LCT pathfinde	s Spectrometr y (OES) finish. e preparation a nalysis is obtain sults are semi-	y and Inductively nd analytical produced with an Olympountitative only.	cedures and included an ous Vanta and Niton XL5
Verification of sampling and assaying • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data.				Independent sta Independent fie	andards were si ld duplicates we	the laboratory using standards ubmitted by the Company at a ere included through selective	rate of 1:20 sa	amples.	on, and obtained utilising
		storage (physical and electronic) protocols.	•		ner) element an	alyses were originally reported dustry standards	d in elemental f	form but have bee	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	ner) element an			form but have bee	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	ner) element an ations as per inc	dustry standards		uivalent Oxide	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	ner) element an ations as per ind Element	dustry standards Oxide Conversion Fac	ctor Equ	uivalent Oxide	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	ner) element an ations as per ind Element Li	Oxide Conversion Factors 2.153	ctor Equ	uivalent Oxide O O ₅	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	ner) element an ations as per inc Element Li Ta	Oxide Conversion Factorial 2.153	ctor Equ Li ₂ (Ta ₂	uivalent Oxide O 2O ₅	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	Element Li Ta Cs	Oxide Conversion Factors	ctor Equ Li20 Ta2 Cs: Cs:	uivalent Oxide O O ₅ O ₅ O O	en converted to relevant
		storage (physical and electronic) protocols.	•	Lithium (and oth	Element Li Ta Cs Be	Oxide Conversion Factors 2.153 1.221 1.060 2.776	ctor Equal Li ₂ C Ta ₂ Cs ₂ Bee	uivalent Oxide O O O S O S O O O O O O O O O O O O O	en converted to relevant
Location of data points		storage (physical and electronic) protocols.	•	Lithium (and oth oxide concentral oxide	Element an ations as per inc Element Li Ta Cs Be Rb Nb	Oxide Conversion Face 2.153 1.221 1.060 2.776 1.094	ctor Equ Li ₂ (Ta ₂ Cs ₂ Bet Rb ₂	uivalent Oxide O O O S O O O O O O O O O O O O O O O	
	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	•	Drill collar locat 5m Map coordinate Drill spacing is some property of the collar locates of the collar locate	er) element an ations as per inc Element Li Ta Cs Be Rb Nb ions were surve es: all recorded	Oxide Conversion Face	ctor Equi	uivalent Oxide O O O S O O O O O O O O O O O O O O O	
points Data spacing and	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore	•	Drill collar locat 5m Map coordinate Drill spacing is a Drill spacing is a Regional soil po	rer) element an ations as per inc Element Li Ta Cs Be Rb Nb ions were surve es: all recorded suitable for reponot suitable for XRF survey was	Oxide Conversion Factorial States of Conversion Factorial Stat	ctor Equ Li ₂ c Ta ₂ Cs: Bet Rb ₂ Nb: sing the UTM co	uivalent Oxide O O O O O O O O O O O O O O O O O O O	

Criteria	JORC Code explanation	Commentary
		Company's Exploration Manager. Samples were transported in secure sealed bags to the laboratory • Sample security and integrity is in place to industry standards
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. External audits of the data are currently in progress by Xplore Global, a UK-based geological consultancy with specialisation in the areas of lithium, caesium, tantalum (LCT) pegmatite targeting, geochemistry and interpretation. Dr Benedikt Steiner (Principal) is a globally renowned expert in LCT geochemistry and is a Qualified Person under JORC regulations & NI43-101.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Oritoria	Conto ocue explanation	Oblimicitally
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project area is located approximately 100km northeast of the Gascoyne Junction and 250km east of Carnarvon. The Ti Tree project comprises one granted Exploration Licence, E09/2503, and two Exploration Licence Applications: E09/2470 and E09/2522. All activities referred to in this announcement pertain to E09/2503 All the tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Numerous exploration campaigns have been completed in the general area since the early 1970's focusing predominantly on uranium and diamonds. Historical exploration activity has been extensive throughout the region occurring during four (4) main phases (WAMEX Report 114263); 1970's (uranium focus); 1980's (largely base metals plus lesser uranium); 1990's (base metals); and 2000's (uranium with minor work on other commodities). Limited exploration to determine the potential for gemstones, Industrial minerals (mica & tourmaline) & rare earths within pegmatites within the Gascoyne Complex has also been undertaken. Although not on Voltaic's tenement, drilling in the area has largely been restricted to the 1970's & 1980's, with AGIP Nucleare conducting extensive drilling within and beyond the Mortimer Hills region. Despite the extensive exploration history, reliability of the data (location and analysis QA/QC information) is equivocal, being limited to hand drafted maps (using local grids), and frequently absent assay data (WAMEX Report 114635). Some more significant and relevant exploration work is outlined below. Noranda Australia Ltd (1972-1974): focussed on the eastern side of Voltaic's ground, exploration followed up on an earlier airborne radiometry survey, and included reconnaissance ground radiometry over 1.5-line kilometres, detailed ground radiometry over 2.5-line kilometres and the collection of 112 soil samples that were subsequently analysed for uranium (poor results). Groundwork observed concentration of uranium in silica (silcrete) capped clayey soil profile developed above weathered granite/gneiss. The silcrete cap was observed to mask the radiometric anomaly with best readings restricted to exposed and eroded margins. Anomalous results were returned by green clays' in the regolith profile with results up to 1,200 cps and 1,026 ppm uranium. Nine auger drillholes were subsequently completed to 3m depth, several of them intersecting carnotite in the subsurface soi

Criteria	JORC Code explanation	Commentary
Out to the second secon		geochemistry. Stream sediment samples appear only to have been subjected to scheelite grain counts and results were at threshold levels. Two rock chip samples returned 3.7% and 0.7% W respectively (WAMEX Report 239038), with tungsten mineralisation considered to be poddy and not of economic interest. Geographe Resources Exploration (1997 – 1998): work included acquisition of aero magnetometry data and the collection of 58 BLEG stream sediment samples (5kg <2 mm). Gold and base metals were being targeted, and U was included as one of the suites of 12 elements that were analysed. All samples returned less than the detection limit of 0.1 ppb except for two samples on a single drainage that contained 0.6 ppb and 0.3 ppb U, respectively (WAMEX Report 55760). More recent exploration 2006 - 2017 (RiverRock Energy Ltd, Dynasty Metals, Glengarry Resources, Zeus Resources and Segue Resources) included 69 rock chip samples collected over an area contiguous with E09/2503 and extending along trend to the southeast, but along with stream sediment sampling results were spurious (WAMEX Reports 76652, 66179 & 94734). Most recently, Arrow Minerals (2011-2020) undertook stream sediment sampling (133 samples), rock chip sampling (11 samples) over a portion of the tenement area. The stream sediment survey was carried out to test a suite of intrusive rocks that had previously been identified as a fertile and fractionated peraluminous leaucratic intrusions with LCT pegmatites. Samples consisted of 50-150 grams of -80 mesh (-177 micron) material from secondary and tertiary streams on a 1-3 samples per square kilometre basis. All samples were submitted to ALS Laboratories in Perth and analysed for 47 elements by technique ME-MS61L which is a 4-acid digest with an ICPMS and ICPAES finish (WAMEX Report 124242). A strong correlation was identified amongst the LCT Pegmatite pathfinder elements (Li-Cs-Ta + Be, Rb, Nb, Sn), successfully identifying several multi-point anomalies. Consulting geochemist Dr. N Brand concluded that these resu
Geology	Deposit type, geological setting and style of mineralisation.	 The project area has historically been considered prospective for unconformity vein style uranium, although it equally considered prospective for rare earth element (REE) mineralisation hosted in iron-rich carbonatite dykes or intrusions, or lithium-caesium-tantalum (LCT) pegmatites. The project area encompasses a portion of the Gascoyne Province of the Capricorn Orogen. This geological belt is positioned between the Archaean Yilgarn Craton to the south, and the Archaean Pilbara Craton to the north, and largely consists of a suite of Archaean to Proterozoic gneisses, granitic and metasedimentary rocks. The tenements lie astride the contact between a tight WNW trending syncline of Meso Proterozoic age rocks of the Bangemall Basin, known as the Ti Tree Syncline, and metamorphic rocks of the Gascoyne Complex. Bangemall Group sediments preserved in the syncline include the basal Irregully Dolomite, overlain by black and grey siltstone and shale of the Jillawarra Formation. They are intruded by thick dolerite sills. Rocks immediately underlying the Bangemall Group rocks consist of phyllite, meta conglomerate and meta sandstone of the Mt James subgroup. Within the Ti Tree project, historical exploration efforts have identified several anomalous uranium and potential LCT pegmatite samples. The status of these anomalies including the scale and exact location of the samples has not yet been confirmed. The ground truthing of the anomalies remains a priority prior to significant exploration activities. The project is within a prospective corridor of pegmatites where a recent exploration effort on within and adjacent to the Thirty-Three Supersuite granites on adjacent tenements has identified the presence of highly anomalous Li and Ta from geochemical analysis, geophysical & hyperspectral surveys, and drilling.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole	Drill collar and survey data, along with various respective metadata reported are reported herein.

Criteria	JORC Code explanation	Commentary
	 o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals that comprise more than one sample have been reported using length-weighted averages. A cut-off grade of 200ppm Li₂O (with a maximum 2m of internal waste) has been used for the reported drill intercepts which is deemed acceptable for vectoring within LCT pegmatite systems.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The orientation of the mineralisation is interpreted and yet to be structurally validated. All reported intervals, and therefore intercepts, are down hole lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in this announcement with sections and map plans created using MicroMine and Mapinfo software respectively.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 No inference to economic mineralisation has been stated. A cut-off of 200ppm Li₂O was used in reporting of exploration results, to aid dismissing interpreted unrealistic anomalous mineralised sub-zones.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All of the relevant data has been included in this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going field reconnaissance exploration in the project area continues and is a high priority for the Company. Exploration is likely to include further lithological and structural mapping, rockchip sampling, pXRF soil sampling, acquisition of high-resolution geophysical data to assist geological interpretation, and drilling.